Advertisement

Journal of Molecular Modeling

, 25:339 | Cite as

Computational study on optoelectronic and charge transport properties of diketopyrrolopyrrole-based A–D–A–D–A structure molecules for organic solar cells

  • Dongmei Luo
  • Ruifa JinEmail author
  • Xueli Han
  • Kexin Li
Original Paper
  • 34 Downloads

Abstract

Eight novel diketopyrrolopyrrole (DPP)-based A–D–A–D–A structure molecules were designed for organic solar cells (OSCs) applications. In these molecules, the electron-deficient DPP and dicyanovinyl groups were used as the acceptor groups and different planar electron-rich groups were employed as the donor π-bridges. Applying the B3LYP/6–31G (d,p) and TD-B3LYP/6–31G (d,p) methods, the optoelectronic and charge transport properties were investigated. It turned out that the different π-bridges can tune effectively the frontier molecular orbital energy levels, band gap, and absorption spectra. Furthermore, the different π-bridges also affect the charge transport properties of the designed molecules. Our results suggest that the investigated molecules can serve as donor materials. Additionally, some investigated molecules can also be used as hole and/or electron transport materials for OSCs.

Graphical abstract

A series of novel A–D–A–D–A molecules are investigated systematically. The optical and electronic properties can be tuned effectively by the π-bridges. All derivatives can be used as donor materials for OSCs. Some designed molecules can be used as hole and/or electron transport materials. The different π-bridges do not significantly affect the stability of the molecules.

Keywords

Diketopyrrolopyrrole (DPP) Dicyanovinyl Optoelectronic property Reorganization energy Organic solar cells (OSCs) 

Notes

Funding information

This work was supported by NSFC (grant number 21563002) and Natural Science Foundation of Inner Mongolia Autonomous Region (grant number 2019MS02030).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

894_2019_4230_MOESM1_ESM.doc (98 kb)
ESM 1 (DOC 98 kb)

References

  1. 1.
    Qu SY, Qin C, Islam A, Hua JL, Chen H, Tian H, Han L (2012). Chem Asian J 7:2895–2903PubMedCrossRefGoogle Scholar
  2. 2.
    Qu S, Tian H (2012). Chem Commun 48:3039–3051CrossRefGoogle Scholar
  3. 3.
    Fischer GM, Ehlers AP, Zumbusch A, Daltrozzo E (2007). Angew Chem Int Ed 46:3750–3753CrossRefGoogle Scholar
  4. 4.
    Beyerlein T, Tieke B, Forero-Lenger S, Brütting W (2002). Synth Met 130:115–119CrossRefGoogle Scholar
  5. 5.
    Qiao Y, Guo Y, Yu C, Zhang F, Xu W, Liu Y, Zhu D (2012). J Am Chem Soc 134:4084–4087PubMedCrossRefGoogle Scholar
  6. 6.
    Chen HJ, Guo YL, Yu G, Zhao Y, Zhang J, Gao D, Liu HT, Liu YQ (2012). Adv Mater 24:4618–4622PubMedCrossRefGoogle Scholar
  7. 7.
    Jin Y, Xu Y, Liu Y, Wang L, Jiang H, Cao DR (2011). Dyes Pigments 90:311–318CrossRefGoogle Scholar
  8. 8.
    Sonar P, Ng GM, Lin TT (2010). J Mater Chem 20:3626–3636CrossRefGoogle Scholar
  9. 9.
    Lin Y, Cheng P, Li Y, Zhan XA (2012). Chem Commun 48:4773–4775CrossRefGoogle Scholar
  10. 10.
    Burckstummer H, Weissenstein A, Bialas D (2011). J Organomet Chem 76:2426–2432CrossRefGoogle Scholar
  11. 11.
    Walker B, Tamayo AB, Dang XD, Zalar P, Seo JH, Garcia A, Tantiwiwat M, Nguyen TQ (2009). Adv Funct Mater 19:3063–3069CrossRefGoogle Scholar
  12. 12.
    Sharma GD, Mikroyannidis JA, Sharma SS, Roy MS, Thomas KRJ (2012). Org Electron 13:652–666CrossRefGoogle Scholar
  13. 13.
    Tamayo AB, Walker B, Nguyen TQ (2008). J Phys Chem C 112:11545–11551CrossRefGoogle Scholar
  14. 14.
    Huo L, Hou J, Chen HY, Zhang S, Jiang Y, Chen TL, Yang Y (2009). Macromolecules 42:6564–6571CrossRefGoogle Scholar
  15. 15.
    Tamayo AB, Tantiwiwat M, Walker B, Nguyen TQ (2008). J Phys Chem C 112:15543–15552CrossRefGoogle Scholar
  16. 16.
    Chi LC, Chen HF, Hung WY, Hsu YH, Feng PC (2013). Sol Energy Mater Sol Cells 109:33–39CrossRefGoogle Scholar
  17. 17.
    Choi YS, Jo WH (2013). Org Electron 14:1621–1628CrossRefGoogle Scholar
  18. 18.
    Blanchard P, Verlhac P, Michaux L, Frere P, Roncali J (2006). Chem Eur J 12:1244–1255PubMedCrossRefGoogle Scholar
  19. 19.
    Roncali J (1997). Chem Rev 97:173–206PubMedCrossRefGoogle Scholar
  20. 20.
    Suraru SL, Zschieschang U, Klauk H, Würthner F (2011). Chem Commun 47:1767–1769CrossRefGoogle Scholar
  21. 21.
    Wang C, Zang Y, Qin Y, Zhang Q, Sun Y, Di C, Xu W, Zhu D (2014). Chem Eur J 20:13755–13761PubMedCrossRefGoogle Scholar
  22. 22.
    Lin G, Qin Y, Zhang J, Guan YS, Xu H, Xu W, Zhu D (2016). J Mater Chem C 4:4470–4477CrossRefGoogle Scholar
  23. 23.
    Frisch MJT, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian, Inc., Wallingford, CT, USAGoogle Scholar
  24. 24.
    Becke AD (1993). J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  25. 25.
    Adamo C, Barone V (1999). J Chem Phys 110:6158–6170CrossRefGoogle Scholar
  26. 26.
    Tawada Y, Tsuneda T, Yanagisawa S, Yanai T, Hirao K (2004). J Chem Phys 120:8425–8433PubMedCrossRefGoogle Scholar
  27. 27.
    Chai JD, Head-Gordon M (2008). Phys Chem Chem Phys 10:6615–6620PubMedCrossRefGoogle Scholar
  28. 28.
    Zhao Y, Truhlar DG (2008). Theor Chem Accounts 120:215–241CrossRefGoogle Scholar
  29. 29.
    Yanai T, Tew DP, Handy NC (2004). Chem Phys Lett 393:51–57CrossRefGoogle Scholar
  30. 30.
    Frisch MJ, Head-Gordon M, Pople JA (1990). Chem Phys Lett 166:275–280CrossRefGoogle Scholar
  31. 31.
    Saebo S, Almlof J (1989). Chem Phys Lett 154:83–89CrossRefGoogle Scholar
  32. 32.
    Sharma GD, Mikroyannidis JA, Sharma SS, Roy MS, Justin Thomas KR (2012). Org Electron 13:652–666CrossRefGoogle Scholar
  33. 33.
    Yoon WS, Park SK, Cho I, Oh JA, Kim JH, Park SY (2013). Adv Funct Mater 23:3519–3524CrossRefGoogle Scholar
  34. 34.
    Huang JD, Li WL, Wen SH, Dong B (2015). J Comput Chem 36:695–706PubMedCrossRefGoogle Scholar
  35. 35.
    Barszcz B, Kędzierski K, Jeong HY, Kimn TD (2017). J Lumin 185:219–227CrossRefGoogle Scholar
  36. 36.
    Zhang S, Sun T, Xu Z, Li T, Li Y, Niu Q, Liu H (2017). Tetrahedron Lett 58:2779–2783CrossRefGoogle Scholar
  37. 37.
    Momeni MR, Brown A (2015). J Chem Theory Comput 11:2619–2632PubMedCrossRefGoogle Scholar
  38. 38.
    Ponce-Vargas M, Azarias C, Jacquemin D, Guennic BL (2017). J Phys Chem B 121:10850–10858PubMedCrossRefGoogle Scholar
  39. 39.
    Marcus RA (1993). Rev Mod Phys 65:599–610CrossRefGoogle Scholar
  40. 40.
    Marcus RA (1964). Annu Rev Phys Chem 15:155–196CrossRefGoogle Scholar
  41. 41.
    Lin BC, Cheng CP, You ZQ, Hsu CP (2005). J Am Chem Soc 127:66–67PubMedCrossRefGoogle Scholar
  42. 42.
    Gruhn NE, da Silva Filho DA, Bill TG, Malagoli M, Coropceanu V, Kahn A, Bredas JL (2002). J Am Chem Soc 124:7918–7919PubMedCrossRefGoogle Scholar
  43. 43.
    Köse ME, Mitchell WJ, Kopidakis N, Chang CH, Shaheen SE, Kim K, Rumbles G (2007). J Am Chem Soc 129:14257–14270PubMedCrossRefGoogle Scholar
  44. 44.
    Pearson RG (1985). J Am Chem Soc 107:6801–6806CrossRefGoogle Scholar
  45. 45.
    Start MS (1997). J Phys Chem A 101:8296–8301CrossRefGoogle Scholar
  46. 46.
    Ku J, Lansac Y, Jang YH (2011). J Phys Chem C 115:21508–21516CrossRefGoogle Scholar
  47. 47.
    Scharber MC, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec CJ (2006). Adv Mater 18:789–794CrossRefGoogle Scholar
  48. 48.
    O’Boyle NM, Vos JG (2003) GaussSum 1.0, Dublin City University, Dublin.Google Scholar
  49. 49.
    Von Rague SP, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer III HF, Schreiners PR (1998) Encyclopedia of Computational Chemistry. Wiley, Chichester, UK, pp 2646–2664Google Scholar
  50. 50.
    Dreuw A, Head-Gordon M (2004). J Am Chem Soc 126:4007–4016PubMedCrossRefGoogle Scholar
  51. 51.
    Chen HY, Chao I (2005). Chem Phys Lett 401:539–545CrossRefGoogle Scholar
  52. 52.
    Liu CC, Mao SW, Kuo MY (2010). J Phys Chem C 114:22316–22321CrossRefGoogle Scholar
  53. 53.
    Zou LY, Ren AM, Feng JK, Liu YL, Ran XQ, Sun CC (2008). J Phys Chem A 112:12172–12178PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringChifeng UniversityChifengChina
  2. 2.Inner Mongolia Key Laboratory of Photoelectric Functional MaterialsChifengChina

Personalised recommendations