Advertisement

Journal of Molecular Modeling

, 25:329 | Cite as

Quantum chemical calculations of 31P NMR chemical shifts of P-donor ligands in platinum(II) complexes

  • Martin Sojka
  • Marek Nečas
  • Jaromir ToušekEmail author
Original Paper

Abstract

This work aims to find the most suitable method that is practically applicable for the calculation of 31P NMR chemical shifts of Pt(II) complexes. The influence of various all-electron and ECP basis sets, DFT functionals, and solvent effects on the optimized geometry was tested. A variety of combinations of DFT functionals BP86, B3LYP, PBE0, TPSSh, CAM-B3LYP, and ωB97XD with all-electron basis sets 6-31G, 6-31G(d), 6-31G(d,p), 6-311G(d,p), and TZVP and ECP basis sets SDD, LanL2DZ, and CEP-31G were used. Chemical shielding constants were then calculated using BP86, PBE0, and B3LYP functionals in combination with the TZ2P basis. The magnitude of spin-orbit interactions was also evaluated.

Keywords

Pt complexes 31P NMR DFT calculations Spin-orbit interactions 

Notes

Funding information

This research has been financially supported by the Ministry of Education, Youth and Sports of the Czech Republic under the project CEITEC 2020 (LQ1601) and the Czech Science Foundation (GA16-05961S). Access to computing and storage facilities owned by parties and projects contributing to the National Grid Infrastructure MetaCentrum provided under the program “Projects of Large Research, Development, and Innovations Infrastructures” (CESNET LM2015042), is greatly appreciated. The CIISB research infrastructure project LM2015043 funded by MEYS CR is gratefully acknowledged for the financial support of the measurements at the CF X-ray Diffraction and Bio-SAXS.

Supplementary material

894_2019_4222_MOESM1_ESM.docx (43 kb)
ESM 1 (DOCX 43 kb)

References

  1. 1.
    Boddien A, Gärtner F, Jackstell R, Junge H, Spannenberg A, Baumann W, Ludwig R, Beller M (2010). Angew Chem Int Ed 49:8993Google Scholar
  2. 2.
    Williams FJ, Jarvo ER (2011). Angew Chem Int Ed 50:4459Google Scholar
  3. 3.
    Chang Y-Y, Hung J-Y, Chi Y, Chyn J-P, Chung M-W, Lin C-L, Chou P-T, Lee G-H, Chang C-H, Lin W-C (2011). Inorg Chem 50:5075PubMedGoogle Scholar
  4. 4.
    Noyori R, Takaya H (1990). Acc Chem Res 23:345Google Scholar
  5. 5.
    Osborn JA, Wilkinson G, Mrowca JJ (2007) Inorganic Syntheses. Wiley, Hoboken, p 67Google Scholar
  6. 6.
    St-Coeur P-D, Adams ME, Kenny BJ, Stack DL, Vogels CM, Masuda JD, Morin Jr P, Westcott SA (2017). Transit Met Chem 42:693Google Scholar
  7. 7.
    Chiririwa H, Moss JR, Hendricks D, Smith GS, Meijboom R (2013). Polyhedron 49:29Google Scholar
  8. 8.
    Fanelli M, Formica M, Fusi V, Giorgi L, Micheloni M, Paoli P (2016). Coord Chem Rev 310:41Google Scholar
  9. 9.
    Bálint E, Tajti Á, Tripolszky A, Keglevich G (2018). Dalton Trans 47:4755PubMedGoogle Scholar
  10. 10.
    Melník M, Mikuš P (2016). J Organomet Chem 819:46Google Scholar
  11. 11.
    Autschbach J (2004) Principles and Applications of Density Functional Theory in Inorganic Chemistry I. In: Kaltsoyannis N, McGrady JE (eds) Structure and Bonding. Springer Berlin Heidelberg, Berlin, p 1Google Scholar
  12. 12.
    (1996) Encyclopedia of nuclear magnetic resonance. In: Grant DM, Harris RK (eds) Wiley: ChichesterGoogle Scholar
  13. 13.
    Pyykkö P (2012). Annu Rev Phys Chem 63:45PubMedGoogle Scholar
  14. 14.
    Autschbach J (2014). Philos Trans R Soc A Math Phys Eng Sci 372:20120489Google Scholar
  15. 15.
    van Wüllen C (2000). Phys Chem Chem Phys 2:2137Google Scholar
  16. 16.
    Latypov SK, Polyancev FM, Yakhvarov DG, Sinyashin OG (2015). Phys Chem Chem Phys 17:6976PubMedGoogle Scholar
  17. 17.
    Sutter K, Autschbach J (2012). J Am Chem Soc 134:13374PubMedGoogle Scholar
  18. 18.
    Pawlak T, Munzarová ML, Pazderski L, Marek R (2011). J Chem Theory Comput 7:3909PubMedGoogle Scholar
  19. 19.
    Vícha J, Novotný J, Straka M, Repisky M, Ruud K, Komorovsky S, Marek R (2015). Phys Chem Chem Phys 17:24944PubMedGoogle Scholar
  20. 20.
    Vícha J, Patzschke M, Marek R (2013). Phys Chem Chem Phys 15:7740PubMedGoogle Scholar
  21. 21.
    Mintcheva N, Tanabe M, Osakada K, Georgieva I, Mihailov T, Trendafilova N (2010). J Organomet Chem 695:1738Google Scholar
  22. 22.
    Mastrorilli P, Todisco S, Bagno A, Gallo V, Latronico M, Fortuño C, Gudat D (2015). Inorg Chem 54:5855PubMedGoogle Scholar
  23. 23.
    Roukala J, Orr ST, Hanna JV, Vaara J, Ivanov AV, Antzutkin ON, Lantto P (2016). J Phys Chem A 120:8326PubMedGoogle Scholar
  24. 24.
    Hrobárik P, Hrobáriková V, Meier F, Repiský M, Komorovský S, Kaupp M (2011). J Phys Chem A 115:5654PubMedGoogle Scholar
  25. 25.
    Greif AH, Hrobárik P, Hrobáriková V, Arbuznikov AV, Autschbach J, Kaupp M (2015). Inorg Chem 54:7199PubMedGoogle Scholar
  26. 26.
    Bühl M, Kabrede H (2006). J Chem Theory Comput 2:1282PubMedGoogle Scholar
  27. 27.
    Bühl M, Reimann C, Pantazis DA, Bredow T, Neese F (2008). J Chem Theory Comput 4:1449PubMedGoogle Scholar
  28. 28.
    Minenkov Y, Singstad Å, Occhipinti G, Jensen VR (2012). Dalton Trans 41:5526PubMedGoogle Scholar
  29. 29.
    Paier J, Marsman M, Kresse G (2007). J Chem Phys 127:024103PubMedGoogle Scholar
  30. 30.
    Sojka M, Tousek J, Badri Z, Foroutan-Nejad C, Necas M (2019). Polyhedron 170:593Google Scholar
  31. 31.
    van Lenthe E, Baerends EJ, Snijders JG (1993). J Chem Phys 99:4597Google Scholar
  32. 32.
    Wolff SK, Ziegler T, van Lenthe E, Baerends EJ (1999). J Chem Phys 110:7689Google Scholar
  33. 33.
    Sojka M, Tousek J, Badri Z, Foroutan-Nejad C, Necas M. submittedGoogle Scholar
  34. 34.
    Perdew JP (1986). Phys Rev B 33:8822Google Scholar
  35. 35.
    Becke AD (1993). J Chem Phys 98:5648Google Scholar
  36. 36.
    Vosko SH, Wilk L, Nusair M (1980). Can J Phys 58:1200Google Scholar
  37. 37.
    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994). J Phys Chem 98:11623Google Scholar
  38. 38.
    Perdew JP, Burke K, Ernzerhof M (1997). Phys Rev Lett 78:1396Google Scholar
  39. 39.
    Perdew JP, Burke K, Ernzerhof M (1996). Phys Rev Lett 77:3865PubMedGoogle Scholar
  40. 40.
    Adamo C, Barone V (1999). J Chem Phys 110:6158Google Scholar
  41. 41.
    Staroverov VN, Scuseria GE, Tao J, Perdew JP (2003). J Chem Phys 119:12129Google Scholar
  42. 42.
    Perdew JP, Tao J, Staroverov VN, Scuseria GE (2004). J Chem Phys 120:6898PubMedGoogle Scholar
  43. 43.
    Yanai T, Tew DP, Handy NC (2004). Chem Phys Lett 393:51Google Scholar
  44. 44.
    Grimme S (2006). J Comput Chem 27:1787Google Scholar
  45. 45.
    Chai J-D, Head-Gordon M (2008). Phys Chem Chem Phys 10:6615PubMedGoogle Scholar
  46. 46.
    Andrae D, Häußermann U, Dolg M, Stoll H, Preuß H (1990). Theor Chim Acta 77:123Google Scholar
  47. 47.
    Dolg M, Wedig U, Stoll H, Preuss H (1987). J Chem Phys 86:866Google Scholar
  48. 48.
    Hay PJ, Wadt WR (1985). J Chem Phys 82:270Google Scholar
  49. 49.
    Hay PJ, Wadt WR (1985). J Chem Phys 82:299Google Scholar
  50. 50.
    Wadt WR, Hay PJ (1985). J Chem Phys 82:284Google Scholar
  51. 51.
    Stevens WJ, Basch H, Krauss M (1984). J Chem Phys 81:6026Google Scholar
  52. 52.
    Stevens WJ, Krauss M, Basch H, Jasien PG (1992). Can J Chem 70:612Google Scholar
  53. 53.
    Cundari TR, Stevens WJ (1993). J Chem Phys 98:5555Google Scholar
  54. 54.
    Barone V, Cossi M, Tomasi J (1997). J Chem Phys 107:3210Google Scholar
  55. 55.
    Cossi M, Scalmani G, Rega N, Barone V (2002). J Chem Phys 117:43Google Scholar
  56. 56.
    Wolinski K, Hinton JF, Pulay P (1990). J Am Chem Soc 112:8251Google Scholar
  57. 57.
    Pye CC, Ziegler T (1999). Theor Chem Accounts 101:396Google Scholar
  58. 58.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1. Gaussian, Inc., WallingfordGoogle Scholar
  59. 59.
    Velde GT, Bickelhaupt FM, Baerends EJ, Guerra CF, Gisbergen SJAV (2001). J Comput Chem 22:2001Google Scholar
  60. 60.
    Autschbach J (2013). Mol Phys 111:2544Google Scholar
  61. 61.
    Greif AH, Hrobárik P, Autschbach J, Kaupp M (2016). Phys Chem Chem Phys 18:30462PubMedGoogle Scholar
  62. 62.
    Vícha J, Komorovsky S, Repisky M, Marek R, Straka M (2018). J Chem Theory Comput 14:3025PubMedGoogle Scholar
  63. 63.
    Greif AH, Hrobárik P, Kaupp M (2017). Chem Eur J 23:9790PubMedGoogle Scholar
  64. 64.
    Rocchigiani L, Fernandez-Cestau J, Chambrier I, Hrobárik P, Bochmann M (2018). J Am Chem Soc 140:8287PubMedPubMedCentralGoogle Scholar
  65. 65.
    Novotný J, Vícha J, Bora PL, Repisky M, Straka M, Komorovsky S, Marek R (2017). J Chem Theory Comput 13:3586PubMedGoogle Scholar
  66. 66.
    Miessler GL, Fischer PJ, Tarr DA (2014) Inorganic chemistry5th edn. Pearson, BostonGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  2. 2.CEITEC – Central European Institute of TechnologyMasaryk UniversityBrnoCzech Republic

Personalised recommendations