Hylleraas’ variational method with orthogonality restrictions
- 38 Downloads
Abstract
In this paper, we suggest a new computational technique for the minimization of Hylleraas’ functional with additional orthogonality restrictions imposed on the desired vectors. It is shown how Hylleraas’ constrained problem can be reduced to an unconstrained one by minimal computational efforts. The asymptotic projection (AP) method proposed earlier to minimize Rayleigh’s quotient subject to some orthogonality restrictions is applied to construct a modified Hylleraas’ functional whose solution fulfills the required constraints automatically. Specifically, equivalence between the original problem and the one for the modified Hamilton operator is derived. It is shown that the AP methodology allows additional restrictions to be treated in a unified approach for both Rayleigh’s quotient and Hylleraas’ functional. Specific features of the method are demonstrated on the electronic parallel polarizability of H2+. Some emphasis is put on the choice of specific distributed basis set adapted for polarizability computation. A comparison with other methods, considered exact or extremely accurate, is also given.
Keywords
Hylleraas’ functional Orthogonality restrictions Asymptotic projection method MinimizationNotes
References
- 1.Gould SH (1966) Variational methods for eigenvalues problems. Oxford University Press, London 328ppCrossRefGoogle Scholar
- 2.Kato T (1966) Perturbation theory for linear operators. Springer-Verlag, Berlin-Heidelberg-New York 740ppCrossRefGoogle Scholar
- 3.Collatz L (1964) Funktional analysis and NumerisceMathematik. Springer-Verlag, Berlin-Göttingen-Heidelberg 447ppGoogle Scholar
- 4.Hylleraas EA (1930). Zeits f Physik 65:209CrossRefGoogle Scholar
- 5.Epstein ST (1974) The variation method in quantum chemistry. Academic Press, New York-San Francisco-London 362ppGoogle Scholar
- 6.Helgaker T, Jørgensen P, Olsen J (2000) Molecular electronic structure theory. Wiley 938ppCrossRefGoogle Scholar
- 7.Glushkov VN (2002). J Math Chem 31:91CrossRefGoogle Scholar
- 8.Glushkov VN, Gidopoulos NI, Wilson S (2008) Alternative technique for the constrained variational problem based on an asymptotic projection method: I. Basics. In: Wilson S, Grout PJ, Maruani J, Delgado-Barrio G, Piecuch (eds) Frontiers in quantum systems in chemistry and physics. Springer, Dordrecht, pp 429–450CrossRefGoogle Scholar
- 9.Glushkov VN, Gidopoulos NI, Wilson S (2008) Alternative technique for the constrained variational problem based on an asymptotic projection method: II. Applications to open-shell self-consistent field theory. In: Wilson S, Grout PJ, Maruani J, Delgado-Barrio G, Piecuch (eds) Frontiers in quantum systems in chemistry and physics. Springer, Dordrecht, pp 451–489CrossRefGoogle Scholar
- 10.Glushkov VN, Assfeld X (2013) In: Roy AK (ed) Theoretical and computational developments in modern density functional theory. Nova Science Publisher, New York, pp 61–102Google Scholar
- 11.Glushkov VN, Assfeld X (2016). Theor Chem Accounts 135:3CrossRefGoogle Scholar
- 12.Glushkov VN, Levy M (2007). J Chem Phys 126:174106CrossRefGoogle Scholar
- 13.Glushkov VN, Levy M (2016). Computations 4:28CrossRefGoogle Scholar
- 14.Staroverov VN, Glushkov VN (2010). J Chem Phys 133:244104CrossRefGoogle Scholar
- 15.Glushkov VN, Assfeld X (2019). J Mol Model 25:148CrossRefGoogle Scholar
- 16.Arthurs AM, Robinson PD (1968). Proc Roy Soc A 303:503CrossRefGoogle Scholar
- 17.Montgomery Jr HE (2001). Int J Mol Sci 2:103CrossRefGoogle Scholar
- 18.Cohen M, McEachran RP, Rotenberg A (1974). Chem Phys Lett 25:14CrossRefGoogle Scholar
- 19.Sadley A (1973). J Chem Phys Lett 19:604CrossRefGoogle Scholar
- 20.Cave RJ, Davidson ER (1988). J ChemPhys 88:5770Google Scholar
- 21.Hollins TW, Clark SJ, Refson K, Gidopoulos N (2012). arXiv:1205.2477v1, [cond-mat.mtrl-sci]Google Scholar
- 22.Montgomery Jr HE (1978). Chem Phys Lett 56:307CrossRefGoogle Scholar
- 23.Montgomery Jr HE, Pupyshev EI (2013). Eur J Phys H 38:519CrossRefGoogle Scholar
- 24.Magnasco V, Battezzati M (2007). Chem Phys Lett 447:368CrossRefGoogle Scholar
- 25.Strang G (1976) Linear algebra and its applications. Academic Press, New YorkGoogle Scholar
- 26.Madsen MM, Peek JM (1971). Atom Data 2:17Google Scholar
- 27.Buckingham AD (1967). Adv Chem Phys 12:107Google Scholar
- 28.Maroulis G (1998). J Chem Phys 96:6048CrossRefGoogle Scholar
- 29.Miller TM, Bederson B (1978) Advances in Atomic and Molecular Physics, vol 13, p 1Google Scholar
- 30.Glushkov VN, Wilson S (2006) Excited state self-consistent field theory using even-tempered primitive Gaussian basis sets. In: Julien J-P, Maruani J, Mayou D, Wilson S, Delgado-Barrio G (eds) Recent advances in the theory of chemical and physical systems. Springer, Dordrecht, pp 107–126CrossRefGoogle Scholar
- 31.Glushkov VN, Kobus J, Wilson S (2008). J Phys B: At Opt Mol Phys 41:205102CrossRefGoogle Scholar
- 32.Baxter CA, Cook DB (1997). Electr J Theor Chem 2:66CrossRefGoogle Scholar
- 33.Rahman A (1953). Physica 19:145CrossRefGoogle Scholar
- 34.Adamov MN, Rebane TK, Evarestov RA (1967). Opt & Spectrosk 22:709Google Scholar
- 35.Korobov V (2000) I.arXiv:physics/0009071 [physics.atom-ph]Google Scholar
- 36.Laurent AD, Glushkov VN, Very T, Assfeld X (2014). J Comp Chem 35:1131CrossRefGoogle Scholar