Advertisement

Journal of Molecular Modeling

, 25:322 | Cite as

Shielding cone behavior in the spherical aromatic He@C606−: origin of the record for the most shielded encapsulated 3He nucleus and comparison to He@C706−

  • Johanna Camacho Gonzalez
  • Alvaro Muñoz-CastroEmail author
Original Paper
Part of the following topical collections:
  1. QUITEL 2018 (44th Congress of Theoretical Chemists of Latin Expression)

Abstract

The textbook concept of shielding cone is one of the characteristic properties for planar aromatic species, which explains the nuclear shielding of neighbor molecules located above and below the molecular plane. Here, we explore its resemblance in spherical aromatic fullerenes, where particularly for C606−, it explains the record for the highest shielding observed via 3He-NMR for the endohedral 3He@C606− species. Our results compare the behavior for He@C60 and He@C606− denoting relevant changes in their magnetic response behavior, where an induced shielding cone was observed for the latter with its long-range shielding character. In contrast to planar aromatics which give rise to a shielding cone property only for a perpendicularly oriented field, it was found that the shielding cone in spherical aromatic fullerenes occurs to any orientation. Thus, the orientation dependence behavior of the shielding cone is accounted, unraveling a characteristic shielding cone pattern in He@C606− which further rationalizes its record on the most shielded He nucleus, upon rotation or tumbling from the aromatic ring about the applied field. For the C70 case, the opposite situation has been characterized via 3He-NMR experiments, which is explained in terms of the deshielding/shielding region inside the C70 cage.

Graphical abstract

Keywords

3He-NMR Shielding Shielding cone Spherical aromaticity 

Notes

Funding information

The authors acknowledge financial support from FONDECYT 1180638. Part of this work was discussed in QUITEL 2018 meeting, at Santiago de Chile.

Supplementary material

894_2019_4211_MOESM1_ESM.docx (17 kb)
ESM 1 (DOCX 17 kb)

References

  1. 1.
    Kekulé FA (1865) Sur la constitution des substances aromatiques. Bull la Soc Chim Paris 3:98–110.  https://doi.org/10.1080/00221309.1969.9711286 CrossRefGoogle Scholar
  2. 2.
    Kekulé FA (1866) Untersuchungen über aromatische Verbindungen Ueber die Constitution der aromatischen Verbindungen. I. Ueber die Constitution der aromatischen Verbindungen. Ann der Chemie und Pharm 137:129–196.  https://doi.org/10.1002/jlac.18661370202 CrossRefGoogle Scholar
  3. 3.
    Piel G (1954) Writing general science articles. J Chem Educ 31:20.  https://doi.org/10.1021/ed031p20 CrossRefGoogle Scholar
  4. 4.
    Geuenich D, Hess K, Köhler F, Herges R (2005) Anisotropy of the induced current density (ACID), a general method to quantify and visualize electronic delocalization. Chem Rev 105:3758–3772.  https://doi.org/10.1021/cr0300901 CrossRefPubMedGoogle Scholar
  5. 5.
    Sundholm D, Fliegl H, Berger RJF (2016) Calculations of magnetically induced current densities: theory and applications. Wiley Interdiscip Rev Comput Mol Sci 6:639–678.  https://doi.org/10.1002/wcms.1270 CrossRefGoogle Scholar
  6. 6.
    Jusélius J, Sundholm D, Gauss JJ, Jusélius J (2004) Calculation of current densities using gauge-including atomic orbitals. J Chem Phys 121:3952–3963.  https://doi.org/10.1063/1.1773136 CrossRefPubMedGoogle Scholar
  7. 7.
    Jusélius J, Sundholm D (2008) Polycyclic antiaromatic hydrocarbons. Phys Chem Chem Phys 10:6630–6634.  https://doi.org/10.1039/b808082h CrossRefPubMedGoogle Scholar
  8. 8.
    Lazzeretti P (2004) Assessment of aromaticity via molecular response properties. Phys Chem Chem Phys 6:217–223.  https://doi.org/10.1039/B311178D CrossRefGoogle Scholar
  9. 9.
    Jenneskens LW, Havenith RWA, Soncini A, Fowler PW (2011) Aromaticity of strongly bent benzene rings: persistence of a diatropic ring current and its shielding cone in [5] paracyclophane. Phys Chem Chem Phys 13:16861.  https://doi.org/10.1039/c1cp21950b CrossRefPubMedGoogle Scholar
  10. 10.
    Havenith RWA, Fowler PW (2006) The origin of the ring current in the all-metal aromatic, Al 4 2-. Phys Chem Chem Phys 8:3383–3386Google Scholar
  11. 11.
    Poater J, Duran M, Solà M, Silvi B (2005) Theoretical evaluation of electron delocalization in aromatic molecules by means of atoms in molecules (AIM) and electron localization function (ELF) topological approaches. Chem Rev 105:3911–3947.  https://doi.org/10.1021/cr030085x CrossRefPubMedGoogle Scholar
  12. 12.
    Carion R, Liégeois V, Champagne B et al (2010) On the aromatic character of 1,2-dihydro-1,2-azaborine according to magnetic criteria. J Phys Chem Lett 1:1563–1568.  https://doi.org/10.1021/jz100401y CrossRefGoogle Scholar
  13. 13.
    Pauling L (1936) The diamagnetic anisotropy of aromatic molecules. J Chem Phys 4:673.  https://doi.org/10.1063/1.1749766 CrossRefGoogle Scholar
  14. 14.
    Pople JA (1956) Proton magnetic resonance of hydrocarbons. J Chem Phys 24:1111.  https://doi.org/10.1063/1.1742701 CrossRefGoogle Scholar
  15. 15.
    Mitchell RH (2001) Measuring aromaticity by NMR. Chem Rev 101:1301–1316.  https://doi.org/10.1021/cr990359+ CrossRefPubMedGoogle Scholar
  16. 16.
    Islas R, Heine T, Merino G (2012) The induced magnetic field. Acc Chem Res 45:215–228.  https://doi.org/10.1021/ar200117a CrossRefPubMedGoogle Scholar
  17. 17.
    Kaupp M, Bühl M, Malkin VG (2006) Calculation of NMR and EPR parameters: theory and applications. John Wiley & Sons, IncGoogle Scholar
  18. 18.
    Klod S, Kleinpeter E (2001) Ab initio calculation of the anisotropy effect of multiple bonds and the ring current effect of arenes application in conformational and configurational analysis. J Chem Soc Perkin Trans 2:1893–1898.  https://doi.org/10.1039/B009809O CrossRefGoogle Scholar
  19. 19.
    Merino G, Heine T, Seifert G (2004) The induced magnetic field in cyclic molecules. Chem Eur J 10:4367–4371.  https://doi.org/10.1002/chem.200400457 CrossRefPubMedGoogle Scholar
  20. 20.
    Merino G, Vela A, Heine T (2005) Description of electron delocalization via the analysis of molecular fields. Chem Rev 105:3812–3841.  https://doi.org/10.1021/cr030086p CrossRefPubMedGoogle Scholar
  21. 21.
    Gierasch TM, Shi Z, Verdine GL (2003) Extensively stereodiversified scaffolds for use in diversity-oriented library synthesis. Org Lett 5:621–624.  https://doi.org/10.1021/ol027116f CrossRefPubMedGoogle Scholar
  22. 22.
    Heine T, Corminboeuf C, Grossmann G, Haeberlen U (2006) Proton magnetic shielding tensors in benzene—from the individual molecule to the crystal. Angew Chem Int Ed 45:7292–7295.  https://doi.org/10.1002/anie.200601557 CrossRefGoogle Scholar
  23. 23.
    Gomes JANF, Mallion RB (2001) Aromaticity and ring currents. Chem Rev 101:1349–1384.  https://doi.org/10.1021/cr990323h CrossRefPubMedGoogle Scholar
  24. 24.
    Sitkoff D, Case DA (1998) Theories of chemical shift anisotropies in proteins and nucleic acids. Prog Nucl Magn Reson Spectrosc 32:165–190.  https://doi.org/10.1016/S0079-6565(98)00013-2 CrossRefGoogle Scholar
  25. 25.
    Case DA (1998) The use of chemical shifts and their anisotropies in biomolecular structure determination. Curr Opin Struct Biol 8:624–630.  https://doi.org/10.1016/S0959-440X(98)80155-3 CrossRefPubMedGoogle Scholar
  26. 26.
    Heine T, Corminboeuf C, Seifert G (2005) The magnetic shielding function of molecules and pi-electron delocalization. Chem Rev 105:3889–3910.  https://doi.org/10.1021/cr030082k CrossRefPubMedGoogle Scholar
  27. 27.
    Sahakyan AB, Vendruscolo M (2013) Analysis of the contributions of ring current and electric field effects to the chemical shifts of RNA bases. J Phys Chem B 117:1989–1998.  https://doi.org/10.1021/jp3057306 CrossRefPubMedGoogle Scholar
  28. 28.
    Platts JA, Gkionis K (2009) NMR shielding as a probe of intermolecular interactions: ab initio and density functional theory studies. Phys Chem Chem Phys 11:10331.  https://doi.org/10.1039/b822560e CrossRefPubMedGoogle Scholar
  29. 29.
    Forse AC, Griffin JM, Presser V et al (2014) Ring current effects: factors affecting the NMR chemical shift of molecules adsorbed on porous carbons. J Phys Chem C 118:7508–7514.  https://doi.org/10.1021/jp502387x CrossRefGoogle Scholar
  30. 30.
    Case D (2000) Interpretation of chemical shifts and coupling constants in macromolecules. Curr Opin Struct Biol 10:197–203.  https://doi.org/10.1016/S0959-440X(00)00068-3 CrossRefPubMedGoogle Scholar
  31. 31.
    Dötsch V, Wagner G (1998) New approaches to structure determination by NMR spectroscopy. Curr Opin Struct Biol 8:619–623.  https://doi.org/10.1016/S0959-440X(98)80154-1 CrossRefPubMedGoogle Scholar
  32. 32.
    Levin RH, Roberts JD (1973) Nuclear magnetic resonance spectroscopy. Ring-current effects upon carbon-13 chemical shifts. Tetrahedron Lett 14:135–138.  https://doi.org/10.1016/S0040-4039(01)95597-2 CrossRefGoogle Scholar
  33. 33.
    Buckingham AD, Legon AC, Roberts SM (1993) Principles of molecular recognition. Springer Netherlands, DordrechtCrossRefGoogle Scholar
  34. 34.
    Comotti A, Bracco S, Valsesia P et al (2007) 2D multinuclear NMR, hyperpolarized xenon and gas storage in organosilica nanochannels with crystalline order in the walls. J Am Chem Soc 129:8566–8576.  https://doi.org/10.1021/ja071348y CrossRefPubMedGoogle Scholar
  35. 35.
    Reimer JA (2012) Development of NMR: solid-state NMR and materials science, post 1995. Encyclopedia of magnetic resonance. John Wiley & Sons, Ltd, ChichesterGoogle Scholar
  36. 36.
    Fitzgerald JJ (1999) Solid-state NMR spectroscopy of inorganic materials. American Chemical Society, Washington, DCCrossRefGoogle Scholar
  37. 37.
    Muñoz-Castro A, King RB (2017) Formation of spherical aromatic endohedral metallic fullerenes. Evaluation of magnetic properties of M@C 28 (M = Ti, Zr, and Hf) from DFT calculations. Inorg Chem 56:15251–15258.  https://doi.org/10.1021/acs.inorgchem.7b02611 CrossRefPubMedGoogle Scholar
  38. 38.
    Muñoz-Castro A (2017) The shielding cone in spherical aromatic structures: insights from models for spherical 2(N+1)2 aromatic fullerenes. Phys Chem Chem Phys 19:12633–12636.  https://doi.org/10.1039/C7CP01870C CrossRefPubMedGoogle Scholar
  39. 39.
    Saunders M, Jiménez-Vázquez HA, Cross RJ et al (1994) Probing the interior of fullerenes by 3He NMR spectroscopy of endohedral 3He@C60 and 3He@C70. Nature 367:256–258.  https://doi.org/10.1038/367256a0 CrossRefGoogle Scholar
  40. 40.
    Buehl M, Thiel W, Jiao H et al (1994) Helium and Lithium NMR chemical shifts of endohedral fullerene compounds: an ab initio study. J Am Chem Soc 116:6005–6006.  https://doi.org/10.1021/ja00092a076 CrossRefGoogle Scholar
  41. 41.
    Bühl M, Hirsch A (2001) Spherical aromaticity of fullerenes. Chem Rev 101:1153–1184.  https://doi.org/10.1021/cr990332q CrossRefPubMedGoogle Scholar
  42. 42.
    Shabtai E, Weitz A, Haddon RC et al (1998) 3 He NMR of He@C 60 6- and He@C 70 6- . New Records for the Most Shielded and the Most Deshielded 3 He Inside a Fullerene 1. J Am Chem Soc 120:6389–6393.  https://doi.org/10.1021/ja9805831 CrossRefGoogle Scholar
  43. 43.
    Chen Z, Wu JI, Corminboeuf C et al (2012) Is C60 buckminsterfullerene aromatic? Phys Chem Chem Phys 14:14886.  https://doi.org/10.1039/c2cp42146a CrossRefPubMedGoogle Scholar
  44. 44.
    Bean DE, Muya JT, Fowler PW et al (2011) Ring currents in boron and carbon buckyballs, B80 and C60. Phys Chem Chem Phys 13:20855.  https://doi.org/10.1039/c1cp22521a CrossRefGoogle Scholar
  45. 45.
    Johansson MP, Jusélius J, Sundholm D (2005) Sphere currents of buckminsterfullerene. Angew Chem Int Ed 44:1843–1846.  https://doi.org/10.1002/anie.200462348 CrossRefGoogle Scholar
  46. 46.
    Elser V, Haddon RC (1987) Icosahedral C60: an aromatic molecule with a vanishingly small ring current magnetic susceptibility. Nature 325:792–794.  https://doi.org/10.1038/325792a0 CrossRefGoogle Scholar
  47. 47.
    Osawa E, Kroto HW, Fowler PW, Wasserman E (1993) The evolution of the football structure for the C60 molecule: a retrospective [and discussion]. Philos Trans R Soc A Math Phys Eng Sci 343:1–8.  https://doi.org/10.1098/rsta.1993.0035 CrossRefGoogle Scholar
  48. 48.
    Gaboardi M, Duyker S, Milanese C et al (2015) In situ neutron powder diffraction of Li6C60 for hydrogen storage. J Phys Chem C 119:19715–19721.  https://doi.org/10.1021/acs.jpcc.5b06711 CrossRefGoogle Scholar
  49. 49.
    Teprovich JA, Weeks JA, Ward PA et al (2017) Fine-tuning the fluorescent properties of Li and Na intercalated C60 with hydrogen. Int J Hydrog Energy 42:22511–22517.  https://doi.org/10.1016/j.ijhydene.2017.04.272 CrossRefGoogle Scholar
  50. 50.
    Ahmed A, Thornton AW, Konstas K et al (2013) Strategies toward enhanced low-pressure volumetric hydrogen storage in nanoporous cryoadsorbents. Langmuir 29:15689–15697.  https://doi.org/10.1021/la403864u CrossRefPubMedGoogle Scholar
  51. 51.
    Amsterdam Density Functional (ADF) Code, Vrije Universiteit: Amsterdam, The Netherlands. http://www.scm.com
  52. 52.
    Perdew JP (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B 33:8822CrossRefGoogle Scholar
  53. 53.
    Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100.  https://doi.org/10.1103/PhysRevA.38.3098 CrossRefGoogle Scholar
  54. 54.
    Moellmann J, Grimme S (2014) DFT-D3 study of some molecular crystals. J Phys Chem C 118:7615–7621.  https://doi.org/10.1021/jp501237c CrossRefGoogle Scholar
  55. 55.
    Schleyer P v R, Maerker C, Dransfeld A et al (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc 118:6317–6318.  https://doi.org/10.1021/ja960582d CrossRefPubMedGoogle Scholar
  56. 56.
    Schreckenbach G (2002) On the relation between a common gauge origin formulation and the GIAO formulation of the NMR shielding tensor. Theor Chem Accounts Theory, Comput Model (Theoretica Chim Acta) 108:246–253.  https://doi.org/10.1007/s00214-002-0379-1 CrossRefGoogle Scholar
  57. 57.
    Schreckenbach G, Ziegler T (1998) Density functional calculations of NMR chemical shifts and ESR g-tensors. Theor Chem Accounts 99:71–82CrossRefGoogle Scholar
  58. 58.
    Schreckenbach G, Ziegler T (1995) Calculation of NMR shielding tensors using gauge-including atomic orbitals and modern density functional theory. J Phys Chem 99:606–611.  https://doi.org/10.1021/j100002a024 CrossRefGoogle Scholar
  59. 59.
    Swart M, Ehlers AW, Lammertsma K (2004) Performance of the OPBE exchange-correlation functional. Mol Phys 102:2467–2474.  https://doi.org/10.1080/0026897042000275017 CrossRefGoogle Scholar
  60. 60.
    Zhang Y, Wu A, Xu X, Yan Y (2006) OPBE: a promising density functional for the calculation of nuclear shielding constants. Chem Phys Lett 421:383–388.  https://doi.org/10.1016/j.cplett.2006.01.095 CrossRefGoogle Scholar
  61. 61.
    Muñoz-Castro A, Caimanque-Aguilar W, Morales-Verdejo C (2017) Computational study of 13C NMR chemical shift anisotropy patterns in C20H10 and [C20H10]4-. Insights into their variation upon planarization and formation of concentric aromatic species in the smaller isolated-pentagon structural motif. J Phys Chem A 121:2698–2703.  https://doi.org/10.1021/acs.jpca.7b01477 CrossRefPubMedGoogle Scholar
  62. 62.
    Miralrio A, Sansores LE, King B, Muñoz-Castro A (2018) C50Cl10, a planar aromatic fullerene. Computational study of 13C-NMR chemical shift anisotropy patterns and aromatic properties. Phys Chem Chem Phys 20:26325–26332.  https://doi.org/10.1039/C8CP04938F CrossRefPubMedGoogle Scholar
  63. 63.
    Klamt A, Jonas V (1996) Treatment of the outlying charge in continuum solvation models. J Chem Phys 105:9972.  https://doi.org/10.1063/1.472829 CrossRefGoogle Scholar
  64. 64.
    Sternfeld T, Saunders M, Cross RJ, Rabinovitz M (2003) The inside story of fullerene anions: a 3He NMR aromaticity probe. Angew Chem Int Ed 42:3136–3139.  https://doi.org/10.1002/anie.200351429 CrossRefGoogle Scholar
  65. 65.
    Kleinpeter E, Klod S, Koch A (2008) Endohedral and external through-space shieldings of the fullerenes c50, c60, c60(-6), c70, and c70(-6)-visualization of (anti)aromaticity and their effects on the chemical shifts of encapsulated nuclei. J Organomet Chem 73:1498–1507.  https://doi.org/10.1021/jo702316h CrossRefGoogle Scholar
  66. 66.
    Muñoz-Castro A (2015) Axis-dependent magnetic behavior of C60 and C6010+. Consequences of spherical aromatic character. Chem Commun 51:10287–10290.  https://doi.org/10.1039/C5CC03352G CrossRefGoogle Scholar
  67. 67.
    Saunders M, Jimenez-Vazquez HA, Bangerter BW et al (1994) 3He NMR: a powerful new tool for following fullerene chemistry. J Am Chem Soc 116:3621–3622.  https://doi.org/10.1021/ja00087a067 CrossRefGoogle Scholar
  68. 68.
    von Schleyer PR, Jiao H (1996) What is aromaticity? Pure Appl Chem 68:209–218.  https://doi.org/10.1351/pac199668020209 CrossRefGoogle Scholar
  69. 69.
    Chan JCC (2012) Solid State NMR. Springer Berlin Heidelberg, Berlin, HeidelbergCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Facultad de Filosofía y HumanidadesUniversidad de ChileSantiagoChile
  2. 2.Grupo de Química Inorgánica y Materiales Moleculares, Facultad de IngenieríaUniversidad Autonoma de ChileSantiagoChile

Personalised recommendations