Journal of Molecular Modeling

, 25:318 | Cite as

Tensile characteristics of carbene-functionalized CNTs subjected to physisorption of polymer chains: a molecular dynamics study

  • S. Ajori
  • S. Haghighi
  • R. AnsariEmail author
Original Paper


Tensile properties such as Young’s modulus and ultimate tensile force are important properties in understanding the characteristics of nanocomposites. Besides, the importance of functionalization methods in modification of the unique mechanical and elastic properties of carbon nanotubes (CNTs) is being widely recognized. In this paper, the tensile properties of CNTs functionalized with carbene under physisorption of polymer chains, i.e., aramid and polyketone chains, are investigated by using a series of molecular dynamics (MD) simulations. The results illustrated that Young’s modulus of carbene-functionalized CNTs (cfCNTs) decreases by rising the weight percentage of carbene. By contrast, Young’s modulus of cfCNTs under physisorption of polymer chains (cfCNTs/polymers) increases as the carbene weight rises. In a particular carbene weight, Young’s modulus of cfCNTs/polymers decreases by increasing the chains of non-covalent functional groups. Moreover, it is shown that similar to Young’s modulus, ultimate tensile force of cfCNTs reduces by increasing the weight percentage of carbene whereas the ultimate tensile force of cfCNTs/polymers has an increasing trend with raising the carbene weight.


Carbene-functionalized carbon nanotubes Elastic properties Aramid Polyketone Molecular dynamics simulations 



  1. 1.
    Xiong QL, Meguid SA (2015) Atomistic investigation of the interfacial mechanical characteristics of carbon nanotube reinforced epoxy composite. Eur Polym J 69:1–5Google Scholar
  2. 2.
    Kundalwal SI, Ray MC (2014) Effect of carbon nanotube waviness on the effective thermoelastic properties of a novel continuous fuzzy fiber reinforced composite. Compos Part B 57:199–209Google Scholar
  3. 3.
    Zang X, Zhou Q, Chang J, Liu Y, Lin L (2015) Graphene and carbon nanotube (CNT) in MEMS/NEMS applications. Microelectron Eng 132:192–206Google Scholar
  4. 4.
    Ansari R, Ajori S, Sadeghi F (2015) Molecular dynamics investigation into the electric charge effect on the operation of ion-based carbon nanotube oscillators. J Phys Chem Solids 85:264–272Google Scholar
  5. 5.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58Google Scholar
  6. 6.
    Terrones M (2003) Science and technology of the twenty-first century: synthesis, properties, and applications of carbon nanotubes. Annu Rev Mater Res 33(1):419–501Google Scholar
  7. 7.
    Zhu J, Kim J, Peng H, Margrave JL, Khabashesku VN, Barrera EV (2003) Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization. Nano Lett 3(8):1107–1113Google Scholar
  8. 8.
    Ansari R, Ajori S, Rouhi S (2015) Elastic properties and buckling behavior of single-walled carbon nanotubes functionalized with diethyltoluenediamines using molecular dynamics simulations. Superlattice Microst 77:54–63Google Scholar
  9. 9.
    Ansari R, Ajori S, Rouhi S (2015) Structural and elastic properties and stability characteristics of oxygenated carbon nanotubes under physical adsorption of polymers. Appl Surf Sci 332:640–647Google Scholar
  10. 10.
    Hirsch A, Vostrowsky O (2005) Functionalization of carbon nanotubes. Functional molecular nanostructures. Springer, Berlin, pp 193–237Google Scholar
  11. 11.
    Parsapour H, Ajori S, Ansari R, Haghighi S (2019) Tensile characteristics of single-walled carbon nanotubes endohedrally decorated with gold nanowires: a molecular dynamics study. Diam Relat Mater 92:117–129Google Scholar
  12. 12.
    Balasubramanian K, Burghard M (2005) Chemically functionalized carbon nanotubes. Small 1(2):180–192PubMedGoogle Scholar
  13. 13.
    Zhao YL, Stoddart JF (2009) Noncovalent functionalization of single-walled carbon nanotubes. Acc Chem Res 42(8):1161–1171PubMedGoogle Scholar
  14. 14.
    Ajori S, Ansari R, Parsapour H (2016) Buckling analysis of defective cross-linked functionalized single-and double-walled carbon nanotubes with polyethylene chains using molecular dynamics simulations. J Mol Model 22(12):298PubMedGoogle Scholar
  15. 15.
    Yuan JM, Chen XH, Chen XH, Fan ZF, Yang XG, Chen ZH (2008) An easy method for purifying multi-walled carbon nanotubes by chlorine oxidation. Carbon 46(9):1266–1269Google Scholar
  16. 16.
    Zhang J, Zou H, Qing Q, Yang Y, Li Q, Liu Z, Guo X, Du Z (2003) Effect of chemical oxidation on the structure of single-walled carbon nanotubes. J Phys Chem B 107(16):3712–3718Google Scholar
  17. 17.
    Kakkar R, Sharma S, Badhani B Density functional study of functionalization of carbon nanotubes with carbenesGoogle Scholar
  18. 18.
    Liu C, Zhang Q, Stellacci F, Marzari N, Zheng L, Zhan Z (2011) Carbene-functionalized single-walled carbon nanotubes and their electrical properties. Small 7(9):1257–1263Google Scholar
  19. 19.
    Ajori S, Haghighi S, Ansari R (2018) A molecular dynamics study on the thermal conductivity of endohedrally functionalized single-walled carbon nanotubes with gold nanowires. Eur Phys J D 72(2):24Google Scholar
  20. 20.
    Ajori S, Ansari R, Haghighi S (2018) A molecular dynamics study on the buckling behavior of cross-linked functionalized carbon nanotubes under physical adsorption of polymer chains. Appl Surf Sci 427(Part B):704–717Google Scholar
  21. 21.
    Ajori S, Haghighi S, Ansari R (2017) Buckling behavior of carbon nanotubes functionalized with carbene under physical adsorption of polymer chains: a molecular dynamics study. Braz J Phys 47(6):606–616Google Scholar
  22. 22.
    Broushak SH, Ansari R, Ajori S (2018) Molecular dynamics simulations of the thermal conductivity of cross-linked functionalized single- and double-walled carbon nanotubes with polyethylene chains. Diam Relat Mater 86:173–178Google Scholar
  23. 23.
    Holzinger M, Abraham J, Whelan P, Graupner R, Ley L, Hennrich F, Kappes M, Hirsch A (2003) Functionalization of single-walled carbon nanotubes with (R-) oxycarbonyl nitrenes. J Am Chem Soc 125(28):8566–8580PubMedGoogle Scholar
  24. 24.
    Pastorin G, Kostarelos K, Prato M, Bianco A (2005) Functionalized carbon nanotubes: towards the delivery of therapeutic molecules. J Biomed Nanotechnol 1(2):133–142Google Scholar
  25. 25.
    Kamarás K, Itkis ME, Hu H, Zhao B, Haddon RC (2003) Covalent bond formation to a carbon nanotube metal. Science 301(5639):1501PubMedGoogle Scholar
  26. 26.
    Lee YS, Marzari N (2006) Cycloaddition functionalizations to preserve or control the conductance of carbon nanotubes. Phys Rev Lett 97(11):116801PubMedGoogle Scholar
  27. 27.
    Ma PC, Siddiqui NA, Marom G, Kim JK (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos A: Appl Sci Manuf 41(10):1345–1367Google Scholar
  28. 28.
    Zhao J, Lu JP, Han J, Yang CK (2003) Noncovalent functionalization of carbon nanotubes by aromatic organic molecules. Appl Phys Lett 82(21):3746–3748Google Scholar
  29. 29.
    Ansari R, Rouhi S, Ajori S (2018) Molecular dynamics simulations of the polymer/amine functionalized single-walled carbon nanotubes interactions. Appl Surf Sci 455:171–180Google Scholar
  30. 30.
    Morishita T, Matsushita M, Katagiri Y, Fukumori K (2010) Noncovalent functionalization of carbon nanotubes with maleimide polymers applicable to high-melting polymer-based composites. Carbon 48(8):2308–2316Google Scholar
  31. 31.
    Ajori S, Parsapour H, Ansari R (2019) Structural properties and buckling behavior of non-covalently functionalized single-and double-walled carbon nanotubes with pyrene-linked polyamide in aqueous environment using molecular dynamics simulations. J Phys Chem Solids 131:79–85Google Scholar
  32. 32.
    Geng Y, Liu MY, Li J, Shi XM, Kim JK (2008) Effects of surfactant treatment on mechanical and electrical properties of CNT/epoxy nanocomposites. Compos A: Appl Sci Manuf 39(12):1876–1883Google Scholar
  33. 33.
    Islam MF, Rojas E, Bergey DM, Johnson AT, Yodh AG (2003) High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett 3(2):269–273Google Scholar
  34. 34.
    Ajori S, Ameri A, Ansari R (2019) On the mechanical stability and buckling analysis of carbon nanotubes filled with ice nanotubes in the aqueous environment: a molecular dynamics simulation approach. J Mol Graph Model 89:74–81PubMedGoogle Scholar
  35. 35.
    Hirsch A (2002) Functionalization of single-walled carbon nanotubes. Angew Chem Int Ed 41(11):1853–1859Google Scholar
  36. 36.
    Nadler M, Werner J, Mahrholz T, Riedel U, Hufenbach W (2009) Effect of CNT surface functionalisation on the mechanical properties of multi-walled carbon nanotube/epoxy-composites. Compos A: Appl Sci Manuf 40(6):932–937Google Scholar
  37. 37.
    Hillermeier K (1984) Prospects of aramid as a substitute for asbestos. Text Res J 54(9):575–580Google Scholar
  38. 38.
    Rouhi S, Alizadeh Y, Ansari R, Aryayi M (2015) Using molecular dynamics simulations and finite element method to study the mechanical properties of nanotube reinforced polyethylene and polyketone. Mod Phys Lett B 29(26):1550155Google Scholar
  39. 39.
    Ansari R, Ajori S, Rouhi S (2015) Investigation of the adsorption of polymer chains on amine-functionalized double-walled carbon nanotubes. J Mol Model 21(12):312Google Scholar
  40. 40.
    Ansari R, Rouhi S, Ajori S (2016) On the interfacial properties of polymers/functionalized single-walled carbon nanotubes. Braz J Phys 46(3):361–369Google Scholar
  41. 41.
    Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19Google Scholar
  42. 42.
    Brenner DW, Shenderova OA, Harrison JA, Stuart SJ, Ni B, Sinnott SB (2002) A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J Phys Condens Matter 14(4):783Google Scholar
  43. 43.
    Stuart SJ, Tutein AB, Harrison JA (2000) A reactive potential for hydrocarbons with intermolecular interactions. J Chem Phys 112(14):6472–6486Google Scholar
  44. 44.
    Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117(19):5179–5197Google Scholar
  45. 45.
    Grindon C, Harris S, Evans T, Novik K, Coveney P, Laughton C (2004) Large-scale molecular dynamics simulation of DNA: implementation and validation of the AMBER98 force field in LAMMPS. Philos Trans A Math Phys Eng Sci 362(1820):1373–1386PubMedGoogle Scholar
  46. 46.
    Lennard-Jones JE, Hall GG, Lennard-Jones JE (1924). Proc R Soc Lond A 106:441Google Scholar
  47. 47.
    Allen MP, Tildesley DJ (1989) Computer simulation of liquids. Oxford university pressGoogle Scholar
  48. 48.
    Zhang C, Shen HS (2008) Predicting the elastic properties of double-walled carbon nanotubes by molecular dynamics simulation. J Phys D Appl Phys 41(5):055404Google Scholar
  49. 49.
    Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31(3):1695Google Scholar
  50. 50.
    Ansari R, Ajori S, Ameri A (2014) Elastic and structural properties and buckling behavior of single-walled carbon nanotubes under chemical adsorption of atomic oxygen and hydroxyl. Chem Phys Lett 616:120–125Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Faculty of EngineeringUniversity of MaraghehMaraghehIran
  2. 2.Faculty of Mechanical Engineering, University Campus2University of GuilanRashtIran
  3. 3.Faculty of Mechanical EngineeringUniversity of GuilanRashtIran

Personalised recommendations