Journal of Molecular Modeling

, 25:296 | Cite as

Structural, electronic, optical, and thermodynamic properties of hydrochlorinated Janus graphene: a first-principle study

  • R. Santosh
  • V. KumarEmail author
Original Paper


The structural, electronic, optical, and thermodynamic properties of hydrochlorinated Janus graphene (J-GN) have been studied using first-principle DFT calculations. The band structure and density of states have been discussed. The values of 16 parameters have been calculated for the most stable chair (C) structure of hydrochlorinated J-GN. Out of sixteen, 12 parameters such as static dielectric constant ε(0), refractive index n(0), birefringence Δn(0), threshold conductivity σ(ω), plasmon energy (ћωp), binding energy (Eb), cohesive energy (Ec), enthalpy (E), entropy (S), free energy (F), heat capacity (Cp), and Debye temperature (ΘD) have been calculated for the first time. The structural and electronic properties have also been studied at 0-GPa, 25-GPa, 35-GPa, 50-GPa, 90-GPa, 100-GPa, 150-GPa, 200-GPa, and 220-GPa external pressures. The hydrochlorinated J-GN shows the direct band gap behavior up to 35 GPa and becomes indirect band gap after 35 GPa. Further, it shows a stable structure up to 90 GPa and becomes unstable at 100-GPa external pressure. The calculated values of all parameters agree well with the available reported values of some parameters at 0 GPa.


First-principle calculations Hydrochlorinated Janus graphene Structural properties Optical properties Thermodynamic properties 



The authors are thankful to the Prof. Rajiv Shekhar, Director, IIT(ISM), Dhanbad for his continuous encouragement throughout this work.


  1. 1.
    Lin YM, Dimitrakopoulos C, Jenkins KA, Farmer DB, Chiu HY, Grill A, Avouris P (2010). Science 327:662CrossRefGoogle Scholar
  2. 2.
    Ma Y, Dai Y, Guo M, Huang B (2012). Phys Rev B 85:235448CrossRefGoogle Scholar
  3. 3.
    Ma Y, Dai Y, Guo M, Niu C, Zhu Y, Huang B (2012). ACS Nano 6:1695–1701CrossRefGoogle Scholar
  4. 4.
    Kim SY, Park HS (2010). Nanotechnology 21(1-8):105710CrossRefGoogle Scholar
  5. 5.
    Ma Y, Dai Y, Wei W, Niu C, Yu L, Huang B (2011). J Phys Chem C 115:20237–20241CrossRefGoogle Scholar
  6. 6.
    Bonaccorso S, Sun Z, Hasan T, Ferrari AC (2010). Nat Photonics 4:611–622CrossRefGoogle Scholar
  7. 7.
    Marinopoulos AG, Reining L, Rubio A, Olevano V (2004). Phys Rev B 69:245419CrossRefGoogle Scholar
  8. 8.
    Yuanbo Z, Tsung-Ta T, Girit C, Zhao H, Martin MC, Zettl A, Crommie MF, Shen YR, Feng W (2009). Nature 459:820–823CrossRefGoogle Scholar
  9. 9.
    Castro EV, Novoselov KS, Morozov SV, Peres NMR, Dos Santos J, Nilsson J, Guinea F, Geim AK, Neto AHC (2007). Phys Rev Lett 99:216802CrossRefGoogle Scholar
  10. 10.
    Sofo JO, Chaudhari AS, Barber GD (2007). Phys Rev B 75:153401CrossRefGoogle Scholar
  11. 11.
    Cadelano E, Palla PL, Giordano S, Colombo L (2010). Phys Rev B 82:235414CrossRefGoogle Scholar
  12. 12.
    Leenaerts O, Peelaers H, Hernandez-Nieves AD, Partoens B, Peeters FM (2010). Phys Rev B 82:195436CrossRefGoogle Scholar
  13. 13.
    Jia-An Y, Lede X, Chou MY (2009). Phys Rev Lett 103:086802CrossRefGoogle Scholar
  14. 14.
    Nath P, Chowdhury S, Sanyal D, Jana D (2014). Carbon 73:275–282CrossRefGoogle Scholar
  15. 15.
    Klintenberg M, Lebègue S, Katsnelson MI, Eriksson O (2010). Phys Rev B 81:085433CrossRefGoogle Scholar
  16. 16.
    Singh R, Bester G (2011). Phys Rev B 84:155427CrossRefGoogle Scholar
  17. 17.
    Nair RR, Ren WC, Jalil R, Riaz I, Kravets VG, Britnell L, Blake P, Schedin F, Mayorov AS, Yuan S, Katsnelson MI, Cheng HM, Strupinski W, Bulusheva LG, Okotrub AV, Grigorieva IV, Grigorenko AN, Novoselov KS, Geim AK (2010). Small 6:2877–2884CrossRefGoogle Scholar
  18. 18.
    Elias DC, Nair RR, Mohiuddin TMG, Morozov SV, Blake P, Halsall MP, Ferrari AC, Boukhvalov DW, Katsnelson MI, Geim AK, Novoselov KS (2009). Science 323:610–613CrossRefGoogle Scholar
  19. 19.
    Karlicky F, Zboril R, Otyepka M (2012). J Chem Phys 137:034709CrossRefGoogle Scholar
  20. 20.
    Karlicky F, Turon J (2018). Carbon 135:134–144CrossRefGoogle Scholar
  21. 21.
    Jin Y, Xue Q, Zhu L, Li X, Pan X, Zhang J, Xing W, Wu T, Liu Z (2016). Sci Rep 6:26914CrossRefGoogle Scholar
  22. 22.
    Kumar V, Santosh R, Chandra S (2017). Mater Sci Eng B 226:64–71CrossRefGoogle Scholar
  23. 23.
    Santosh R, Kumar V (2019). Solid State Sci 94:70–76CrossRefGoogle Scholar
  24. 24.
    Santosh R, Kumar V (2019). J Comput Electron. 18:770–778 CrossRefGoogle Scholar
  25. 25.
    Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clarck SJ, Payne MC (2002). J Phys Cond Mat. 14:2717–2744Google Scholar
  26. 26.
    Perdew JP, Burke K, Ernzerhof M (1996). Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  27. 27.
    Vanderbilt D (1990). Phys Rev B 41:7892–7895CrossRefGoogle Scholar
  28. 28.
    Fischer TH, Almlof J (1992). J Phys Chem 96:9768–9774CrossRefGoogle Scholar
  29. 29.
    Segall MD, Shah R, Pickard CJ, Payne MC (1996). Phys Rev B 54:16317–16320CrossRefGoogle Scholar
  30. 30.
    Wen X, Hand L, Labet V, Yang T, Hoffmann R, Ashcroft NW, Oganov AR, Lyakhov AO (2011). PNAS 108:6833–6837CrossRefGoogle Scholar
  31. 31.
    Zijlstra P, Orrit M, Koenderink AF (2014) Springer Heidelberg New York Dordrecht London. Google Scholar
  32. 32.
    Momida H, Hamada T, Takagi Y, Yamamoto T, Uda T, Ohno T (2007). Phys Rev B 75:195105CrossRefGoogle Scholar
  33. 33.
    Tributsch H (1977). Naturforsch A 32A:972–985Google Scholar
  34. 34.
    John R, Merlin B (2017). J Phys Chem Solids 110:307CrossRefGoogle Scholar
  35. 35.
    Rani P, Dubey GS, Jindal VK (2014). Phys E 62:28–35CrossRefGoogle Scholar
  36. 36.
    Mohan B, Kumar A, Ahluwalia PK (2012). Phys E 44:1670–1674CrossRefGoogle Scholar
  37. 37.
    Sedelnikova OV, Bulusheva LG, Okotrub AV (2011). J Chem Phys 134:244707CrossRefGoogle Scholar
  38. 38.
    Baroni S, Gironcoli SD, Corso AD, Giannozzi P (2001). Rev Mod Phys 73:515–562CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electronics EngineeringIndian Institute of Technology (Indian School of Mines)DhanbadIndia

Personalised recommendations