Journal of Molecular Modeling

, 25:297 | Cite as

Investigation of the mechanism of enantioseparation of some drug compounds by considering the mobile phase in HPLC by molecular dynamics simulation

  • Hamideh Barfeii
  • Zahra Garkani-NejadEmail author
  • Vahid Saheb
Original Paper


The separation mechanism of chiral drugs in high-pressure liquid chromatography is yet ambiguous. Computational chemistry helps to gain insights about chiral drug separations. The interaction between the 13 drug enantiomers and cellulose tris (3, 5-dimethyl phenyl carbamate) (chiral cel OD) as chiral stationary phase in 3 mobile phases was assayed by AutoDock and LAMMPS simulations. It is found that not only the structure of 2 enantiomers but also the mobile phase has an important role in enantioseparations and sometimes may invert the elution order. The molecular dynamics simulation is a comprehensive method that can be used to investigate the chiral drug enantioseparation mechanism in HPLC.


Drug enantiomers Mobile phase effect Elution order Molecular dynamics simulation (MD) Docking 


Funding information

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Maier NM, Franco P, Lindner W (2001). J Chromatogr A 906:3CrossRefGoogle Scholar
  2. 2.
    Walker KAM, Wallach MB, Hirschfeld DR (1981). J Med Chem 24:67CrossRefGoogle Scholar
  3. 3.
    Nardi D, Tajana A, Leonardi A, Pennini R, Portioli F, Magistretti M (1981). J Med Chem 24:727CrossRefGoogle Scholar
  4. 4.
    Robertson DW, Beedle EE, Lawson R, Leander JD (1987). J Med Chem 30:939CrossRefGoogle Scholar
  5. 5.
    Karakurt A, Sarac S, Dalkara S (2012). Chromatographia 75:1191CrossRefGoogle Scholar
  6. 6.
    Okamoto Y, Kawashima M, Hatada K (1986). J Chromatogr A 363:173CrossRefGoogle Scholar
  7. 7.
    Chankvetadze B, Yashima E, Okamoto Y (1993). Chem Lett:617Google Scholar
  8. 8.
    Chankvetadze B, Yashima E, Okamoto Y (1994). J Chromatogr A 670:39CrossRefGoogle Scholar
  9. 9.
    Chankvetadze B, Yashima E, Okamoto Y (1995). J Chromatogr A 694:101CrossRefGoogle Scholar
  10. 10.
    Chankvetadze B, Chankvetadze L, Sidamonidze S, Kasashima E, Yashima E, Okamoto Y (1997). J Chromatogr A 787:67CrossRefGoogle Scholar
  11. 11.
    Yamamoto C, Okamoto Y (2004). Bull Chem Soc Jpn 77:227CrossRefGoogle Scholar
  12. 12.
    Chankvetadze B, Chankvetadze L, Sidamonidze S, Yashima E, Okamoto Y (1996). Pharm Biomed Anal 14:1295CrossRefGoogle Scholar
  13. 13.
    Kasat RB, Zvinevich Y, Hillhouse HW, Thomson KT, Wang NHL, Franses EI (2006). J Phys Chem B 110:14114CrossRefGoogle Scholar
  14. 14.
    Kasat RB et al (2006). Adsorption 12:405CrossRefGoogle Scholar
  15. 15.
    Kasat RB, Wang NHL, Franses EI (2007). Biomacromolecules 8:1676CrossRefGoogle Scholar
  16. 16.
    Kasat RB, Wang NHL, Franses EI (2008). J Chromatogr A 1190:110CrossRefGoogle Scholar
  17. 17.
    Kasat RB, Wee SY, Loh JX, Wang NHL, Franses EI (2008). J Chromatogr B 875:81CrossRefGoogle Scholar
  18. 18.
    Kasat RB, Wang NHL, Franses EI (2010). Chirality 22:565PubMedGoogle Scholar
  19. 19.
    Yashima E, Yamada M, Kaida Y, Okamoto Y (1995). J Chromatogr A 694:347CrossRefGoogle Scholar
  20. 20.
    Yamamoto C, Yashima E, Okamoto Y (1999). Bull Chem Soc Jpn 72:1815CrossRefGoogle Scholar
  21. 21.
    Chimenti F, Bolasco A, Manna F, Secci D et al (2004). J Med Chem 47:2071CrossRefGoogle Scholar
  22. 22.
    Sahin ZS, Salgin-Goksen U, Gokhan-Kelekci N, Isik S (2011). J Mol Struct 1006:147CrossRefGoogle Scholar
  23. 23.
    Frisch MJ et al (2004) Gaussian 03, rev. E01. Gaussian, Inc., WallingfordGoogle Scholar
  24. 24.
    Piotr P, Agnieszka DD (2010) Kinetics and dynamics from nano to bio-scale. Springer, NetherlandsGoogle Scholar
  25. 25.
    Garrett MM, Arthur JO, Ruth H, David G (2007) AutoDock, V 4.2.3. The Scripps Research Institute, La JollaGoogle Scholar
  26. 26.
    Plimpton S (1995). J Comput Phys:1171Google Scholar
  27. 27.
    Mindrila G, Mandravel C, Dobrica I, Bugheanu P, Stanculescu IR (2012). J Incl Phenom Macrocycl Chem 74:137CrossRefGoogle Scholar
  28. 28.
    Ye YK, Bai S, Vyas S, Wirth MJ (2007). J Phys Chem B 111:1189CrossRefGoogle Scholar
  29. 29.
    Zhao CF, Cann NM (2008). Anal Chem 80:2426CrossRefGoogle Scholar
  30. 30.
    Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009). J Comput Chem 30:2785CrossRefGoogle Scholar
  31. 31.
    Cosconati S, Forli S, Perryman AL, Harris R, Goodsell DS, Olson AJ (2010). Expert Opin Drug Discovery 5:597CrossRefGoogle Scholar
  32. 32.
    Forli S, Olson AJ (2012). J Med Chem 55:623CrossRefGoogle Scholar
  33. 33.
    Kubota T, Yamamoto C, Okamoto Y (2004). J Polym Sci A Polym Chem 42:4704CrossRefGoogle Scholar
  34. 34.
    Koscho ME, Pirkle WH (2005). Tetrahedron Asymmetry 16:3345CrossRefGoogle Scholar
  35. 35.
    Luzar A, Chandler D (1996). Nature 379:55CrossRefGoogle Scholar
  36. 36.
    Nieto-Draghi C, Hargreaves R, Bates SP (2005). J Phys Condens Matter 17:S3265CrossRefGoogle Scholar
  37. 37.
    Andoh Y, Yasuoka K (2006). J Phys Chem B 110:23264CrossRefGoogle Scholar
  38. 38.
    Zhao CF, Cann NM (2007). J Chromatogr A 1149:197CrossRefGoogle Scholar
  39. 39.
    Cirilli R, Alcaro S, Fioravanti R, Ferretti R, Bolasco A, Gallinella B, Faggi CA (2011). J Chromatogr A 1218:5653CrossRefGoogle Scholar
  40. 40.
    Yang W, Mortier WJ (1986). J Am Chem Soc 108:5708CrossRefGoogle Scholar
  41. 41.
    Uccello-Barretta G, Balzano F, Sicoli G, Frıglola C, Aldana I, Monge A, Paolino D, Guccione S (2004). Bioorg Med Chem 12:447CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chemistry Department, Faculty of ScienceShahid Bahonar University of KermanKermanIran

Personalised recommendations