Journal of Molecular Modeling

, 25:292 | Cite as

Modeling of silicon- and aluminum-doped phosphorene nanoflakes

  • Esaú Martínez Olmedo
  • Cesar Gabriel Vera de la Garza
  • Serguei FomineEmail author
Original Paper


The electronic structure of phosphorene nanoflakes (PNFs) doped with Al and Si has been explored using hybrid functional BHandHlyp/def2-SVP and complete active space (CASSCF) methods. Doping increases the bond length alternation and changes the overall PNF shape. Doping also decreases singlet-triplet splitting in the PNFs. This effect is most notable for Si doping where singlet and triplet states become virtually degenerated. Doping also reduces band gaps and changes the nature of the ground states for Si-doped systems. The ground state of Si-doped PNFs becomes polyradicalic. In general, dopants with even number of valence electrons promote polyradicalic ground state. Doped systems show increased electron affinities (EAs), while the ionization potentials are much less affected. Larger EAs are related with the delocalization of an extra electron over the empty or partially empty 3p orbitals of the dopants. Doping increases the reorganization energies in all cases. Al-doped PNFs are the hole transport materials while Si-doped nanoflakes tend to be electron transport systems.

Graphical abstract


Phosphorene nanoflakes Doping Relaxation energies 


Funding information

This study received financial support from PAPIIT (Grant IN201219/30) and from supercomputing facilities of the National Autonomous University of Mexico.

Supplementary material

894_2019_4182_MOESM1_ESM.docx (63 kb)
ESM 1 (DOCX 62 kb)


  1. 1.
    Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field in atomically thin carbon films. Science 306(80):666–669. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Castro Neto AH, Guinea F, Peres NMR et al (2009) The electronic properties of graphene. Rev Mod Phys 81:109–162. CrossRefGoogle Scholar
  3. 3.
    Dedkov YS, Fonin M (2010) Electronic and magnetic properties of the graphene-ferromagnet interface. New J Phys 12. CrossRefGoogle Scholar
  4. 4.
    Koma A, Yoshimura K (1986) Ultrasharp interfaces grown with Van der Waals epitaxy. Surf Sci 174:556–560. CrossRefGoogle Scholar
  5. 5.
    Castellanos-Gomez A (2015) Black phosphorus: narrow gap, wide applications. J Phys Chem Lett 6:4280–4291CrossRefGoogle Scholar
  6. 6.
    Woomer AH, Farnsworth TW, Hu J et al (2015) Phosphorene: synthesis, scale-up, and quantitative optical spectroscopy. ACS Nano 9:8869–8884. CrossRefPubMedGoogle Scholar
  7. 7.
    Liu H, Neal AT, Zhu Z et al (2014) Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8:4033–4041. CrossRefPubMedGoogle Scholar
  8. 8.
    Sun H, Shang Y, Yang Y, Guo M (2018) Realization of N-type semiconducting of phosphorene through surface metal doping and work function study. J Nanomater 2018:1–9. CrossRefGoogle Scholar
  9. 9.
    Huang Z, Wu Y, Qi X et al (2018) Electronic and magnetic properties of monolayer and bilayer phosphorene doped with transition-metal atoms. Phys Status Solidi B 255. CrossRefGoogle Scholar
  10. 10.
    Hashmi A, Hong J (2015) Transition metal doped phosphorene: first-principles study. J Phys Chem C 119:9198–9204. CrossRefGoogle Scholar
  11. 11.
    Yu QH, Jiang Y, Zhang W et al (2017) Noble metal atoms doped phosphorene: electronic properties and gas adsorption ability. Mater Res Express 4. CrossRefGoogle Scholar
  12. 12.
    Boukhvalov DW (2015) The atomic and electronic structure of nitrogen- and boron-doped phosphorene. Phys Chem Chem Phys 17:27210–27216. CrossRefPubMedGoogle Scholar
  13. 13.
    Cai X, Niu C, He YY et al (2017) Quantum effect enhanced magnetism of C-doped phosphorene nanoribbons: first-principles calculations. Phys Chem Chem Phys 19:28354–28359. CrossRefPubMedGoogle Scholar
  14. 14.
    Nourbakhsh Z, Asgari R (2018) Charge transport in doped zigzag phosphorene nanoribbons. Phys Rev B 97.
  15. 15.
    Shojaei F, Hahn JR, Kang HS (2016) Effect of Si-Si bonds in silicon-doped α-phosphorene bilayers: two-dimensional layers and one-dimensional nanoribbons. J Phys Chem C 120:17106–17114. CrossRefGoogle Scholar
  16. 16.
    Wang K, Wang H, Zhang M et al (2018) Electrical properties of phosphorene systems doped with fourth-period elements. Appl Phys Lett 112. CrossRefGoogle Scholar
  17. 17.
    Serrano-Ruiz M, Caporali M, Ienco A et al (2016) The role of water in the preparation and stabilization of high-quality phosphorene flakes. Adv Mater Interfaces 3. CrossRefGoogle Scholar
  18. 18.
    Sun Z, Xie H, Tang S et al (2015) Ultrasmall black phosphorus quantum dots: synthesis and use as photothermal agents. Angew Chem Int Ed 54:11526–11530. CrossRefGoogle Scholar
  19. 19.
    Zhang X, Xie H, Liu Z et al (2015) Black phosphorus quantum dots. Angew Chem Int Ed 54:3653–3657. CrossRefGoogle Scholar
  20. 20.
    Sofer Z, Bouša D, Luxa J et al (2016) Few-layer black phosphorus nanoparticles. Chem Commun 52:1563–1566. CrossRefGoogle Scholar
  21. 21.
    Yasaei P, Behranginia A, Foroozan T et al (2015) Stable and selective humidity sensing using stacked black phosphorus flakes. ACS Nano 9:9898–9905. CrossRefPubMedGoogle Scholar
  22. 22.
    Sun C, Wen L, Zeng J et al (2016) One-pot solventless preparation of PEGylated black phosphorus nanoparticles for photoacoustic imaging and photothermal therapy of cancer. Biomaterials 91:81–89. CrossRefPubMedGoogle Scholar
  23. 23.
    Chen W, Li K, Wang Y et al (2017) Black phosphorus quantum dots for hole extraction of typical planar hybrid perovskite solar cells. J Phys Chem Lett 8:591–598. CrossRefPubMedGoogle Scholar
  24. 24.
    Zhou S, Liu N, Zhao J (2017) Phosphorus quantum dots as visible-light photocatalyst for water splitting. Comput Mater Sci 130:56–63. CrossRefGoogle Scholar
  25. 25.
    Wang X, Sun G, Li N, Chen P (2016) Quantum dots derived from two-dimensional materials and their applications for catalysis and energy. Chem Soc Rev 45:2239–2262CrossRefGoogle Scholar
  26. 26.
    Bódi D, Höltzl T (2018) Thermal stability and flexibility of hydrogen terminated phosphorene nanoflakes. J Phys Chem C 122:8535–8542. CrossRefGoogle Scholar
  27. 27.
    Gao J, Zhang G, Zhang YW (2016) The critical role of substrate in stabilizing phosphorene nanoflake: a theoretical exploration. J Am Chem Soc 138:4763–4771. CrossRefPubMedGoogle Scholar
  28. 28.
    Niu X, Li Y, Shu H, Wang J (2016) Anomalous size dependence of optical properties in black phosphorus quantum dots. J Phys Chem Lett 7:370–375. CrossRefPubMedGoogle Scholar
  29. 29.
    Becke AD (1993) A new mixing of Hartree-Fock and local density-functional theories. J Chem Phys 98:1372–1377. CrossRefGoogle Scholar
  30. 30.
    Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305. CrossRefGoogle Scholar
  31. 31.
    TURBOMOLE V7.3 2018, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007; available from
  32. 32.
    Olmeda EM, Vera CG, Fomine S (2018) Electronic structure of phosphorene nanoflakes. A theoretical insight. Comput Theor Chem 1130:33–45. CrossRefGoogle Scholar
  33. 33.
    Frisch GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratch DJMJT (2016) Gaussian 16, Rev. A.03. Gaussian, Inc, Wallingford, CT Google Scholar
  34. 34.
    Hättig C, Weigend F (2000) CC2 excitation energy calculations on large molecules using the resolution of the identity approximation. J Chem Phys 113:5154–5161. CrossRefGoogle Scholar
  35. 35.
    Hutchison GR, Ratner MA, Marks TJ (2005) Hopping transport in conductive heterocyclic oligomers: reorganization energies and substituent effects. J Am Chem Soc 127:2339–2350. CrossRefPubMedGoogle Scholar
  36. 36.
    Malagoli M, Brédas JL (2000) Density functional theory study of the geometric structure and energetics of triphenylamine-based hole-transporting molecules. Chem Phys Lett 327:13–17. CrossRefGoogle Scholar
  37. 37.
    Lin BC, Cheng CP, Lao ZPM (2003) Reorganization energies in the transports of holes and electrons in organic amines in organic electroluminescence studied by density functional theory. J Phys Chem A 107:5241–5251. CrossRefGoogle Scholar
  38. 38.
    Brown A, Rundqvist S (1965) Refinement of the crystal structure of black phosphorus. Acta Crystallogr 19:684–685. CrossRefGoogle Scholar
  39. 39.
    Pyykkö P, Atsumi M (2009) Molecular single-bond covalent radii for elements 1-118. Chem Eur J 15:186–197. CrossRefPubMedGoogle Scholar
  40. 40.
    Harvey JN (2011) DFT computation of relative spin-state energetics of transition metal compoundsGoogle Scholar
  41. 41.
    Head-Gordon M (2003) Characterizing unpaired electrons from the one-particle density matrix. Chem Phys Lett 372:508–511. CrossRefGoogle Scholar
  42. 42.
    Martin RL (2003) Natural transition orbitals. J Chem Phys 118:4775–4777. CrossRefGoogle Scholar
  43. 43.
    44 Marcus RA (1956) On the theory of oxidation-reduction reactions involving electron transfer. I. J. Chem. Phys. 24:966–978. CrossRefGoogle Scholar
  44. 44.
    43 Yu W, Zhu Z, Niu CY et al (2015) Anomalous doping effect in black phosphorene using first-principles calculations. Phys Chem Chem Phys 17:16351–16358. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto de Investigaciones en MaterialesUniversidad Nacional Autónoma de MéxicoMexico CityMexico

Personalised recommendations