Journal of Molecular Modeling

, 25:299 | Cite as

Theoretical calculation into the effect of molar ratio on the structures, stability, mechanical properties and detonation performance of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane/ 1,3,5-trinitro-1,3,5-triazacyco-hexane cocrystal

  • Ye-Bai Shi
  • Liang-Fei Bai
  • Jia-Hui Li
  • Guang-ai Sun
  • Jian Gong
  • Xin JuEmail author
Original Paper


Molecular dynamics (MD) simulation was conducted to research the effect of molar ratio on the thermal stability, mechanical properties, and detonation performance of HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazocane)/RDX (1,3,5-trinitro-1,3,5-triazacyco-hexane) cocrystal explosive at ambient condition. The binding energy, mechanical properties, and the detonation parameters of the pure β-HMX, RDX crystal, and the cocrystal models were got and contrasted. The results demonstrate that molar ratio has a great influence on the properties of the cocrystal system. The binding energy of the cocrystals has the maximum values at the 1:1 molar ratio, indicating that the stability of HMX/RDX(1:1) cocrystal is the best and HMX and RDX may prefer to cocrystallizing at 1:1 molar ratio. What’s more, the tensile modulus (E) and shear modulus (G) of the HMX/RDX(1:1) cocrystals have the minimum value, while the C12C44 and K/G have the maximum value, implying that the cocrystal at 1:1 molar ratio has the best mechanical properties. Simultaneously, the E, K, and G of the cocrystals are all smaller than those of β-HMX’s and generally larger than those RDX’s, while the Cauchy pressure (C12C44) and K/G ratio were greater, demonstrating that cocrystallizing can improve the brittleness and enhance the ductility. The detonation velocity (D) and detonation pressure (P) decrease with the rising RDX content, while the properties are still superior to the pure RDX crystal; thus, the energy properties of the cocrystal are still excellent. In a word, HMX/RDX cocrystal at 1:1 molar ratio has the best thermal stability, mechanical properties, and the excellent energetic performance.


HMX/RDX cocrystal Molar ratio Binding energy Mechanical properties Detonation performance Molecular dynamics (MD) simulation 



  1. 1.
    Bayat Y, Zarandi M, Zarei M, Soleyman R (2014) A novel approach for preparation of CL-20 nanoparticles by microemulsion method. J Mol Liq 193:83–86CrossRefGoogle Scholar
  2. 2.
    Bayat Y, Zeynali V (2011) Preparation and characterization of nano-CL-20 explosive. J Energ Mater 29:281–291CrossRefGoogle Scholar
  3. 3.
    Elbeih A, Husarova A, Zeman S (2011) Path to ε-HNIW with reduced impact sensitivity. Cent Eur J Energ Mat 8:173–182Google Scholar
  4. 4.
    Guo X, Ouyang G, Liu J, Li Q, Wang L et al (2015) Massive preparation of reduced-sensitivity nano CL-20 and its characterization. J Energ Mater 33:24–33CrossRefGoogle Scholar
  5. 5.
    Kröber H, Teipel U (2008) Crystallization of insensitive HMX. Propellants Explos Pyrotech 33:33–36CrossRefGoogle Scholar
  6. 6.
    Liu J, Jiang W, Yang Q, Song J, Hao G-z, Li F-s (2014) Study of nano-nitramine explosives: preparation, sensitivity and application. Def Technol 10:184–189CrossRefGoogle Scholar
  7. 7.
    Ma S, Li Y, Li Y, Luo Y (2016) Research on structures, mechanical properties, and mechanical responses of TKX-50 and TKX-50 based PBX with molecular dynamics. J Mol Model 22:43CrossRefGoogle Scholar
  8. 8.
    Ma Z, Gao B, Wu P, Shi J, Qiao Z et al (2015) Facile, continuous and large-scale production of core–shell HMX@ TATB composites with superior mechanical properties by a spray-drying process. RSC Adv 5:21042–21049CrossRefGoogle Scholar
  9. 9.
    Nandi AK, Ghosh M, Sutar VB, Pandey RK (2012) Surface coating of cyclotetramethylenetetranitramine (HMX) crystals with the insensitive high explosive 1, 3, 5-triamino-2, 4, 6-trinitrobenzene (TATB). Cent Eur J Energ Mat 9:119–130Google Scholar
  10. 10.
    Yu Y, Chen S, Li X, Zhu J, Liang H et al (2016) Molecular dynamics simulations for 5, 5′-bistetrazole-1, 1′-diolate (TKX-50) and its PBXs. RSC Adv 6:20034–20041CrossRefGoogle Scholar
  11. 11.
    Gao H, Jiang W, Liu J, Hao G, Xiao L et al (2017) Synthesis and characterization of a new co-crystal explosive with high energy and good sensitivity. J Energ Mater 35:490–498Google Scholar
  12. 12.
    Ghosh M, Sikder AK, Banerjee S, Gonnade RG (2018) Studies on CL-20/HMX (2:1) cocrystal: a new preparation method and structural and thermokinetic analysis. Cryst Growth Des 18:3781–3793CrossRefGoogle Scholar
  13. 13.
    Song X, Wang Y, Zhao S, Li F (2018) Mechanochemical fabrication and properties of CL-20/RDX nano co/mixed crystals. RSC Adv 8:34126–34135CrossRefGoogle Scholar
  14. 14.
    Tao J, Jin B, Chu S, Peng R, Shang Y, Tan B (2018) Novel insensitive energetic-cocrystal-based BTO with good comprehensive properties. RSC Adv 8:1784–1790CrossRefGoogle Scholar
  15. 15.
    Wu J, Zhang J, Li T, Li Z, Zhang T (2015) A novel cocrystal explosive NTO/TZTN with good comprehensive properties. RSC Adv 5:28354–28359CrossRefGoogle Scholar
  16. 16.
    Xu H, Duan X, Li H, Pei C (2015) A novel high-energetic and good-sensitive cocrystal composed of CL-20 and TATB by a rapid solvent/non-solvent method. RSC Adv 5:95764–95770CrossRefGoogle Scholar
  17. 17.
    Zhang Z, Li T, Yin L, Yin X, Zhang J (2016) A novel insensitive cocrystal explosive BTO/ATZ: preparation and performance. RSC Adv 6:76075–76083CrossRefGoogle Scholar
  18. 18.
    Bolton O, Simke LR, Pagoria PF, Matzger AJ (2012) High power explosive with good sensitivity: a 2:1 cocrystal of CL-20:HMX. Cryst Growth Des 12:4311–4314CrossRefGoogle Scholar
  19. 19.
    Bolton O, Matzger AJ (2011) Improved stability and smart-material functionality realized in an energetic cocrystal†. Angew Chem 50:8960–8963CrossRefGoogle Scholar
  20. 20.
    Li H, Shu Y, Gao S, Chen L, Ma Q, Ju X (2013) Easy methods to study the smart energetic TNT/CL-20 co-crystal. J Mol Model 19:4909–4917CrossRefGoogle Scholar
  21. 21.
    Liu K, Zhang G, Luan J, Chen Z, Su P, Shu Y (2016) Crystal structure, spectrum character and explosive property of a new cocrystal CL-20/DNT. J Mol Struct 1110:91–96CrossRefGoogle Scholar
  22. 22.
    Liu Y, An C, Luo J, Wang J (2018) High-density HNIW/TNT cocrystal synthesized using a green chemical method. Acta Crystallogr Sect B: Struct Crystallogr Cryst Chem 74:385–393CrossRefGoogle Scholar
  23. 23.
    Shen JP, Duan XH, Luo QP, Zhou Y, Bao Q et al (2011) Preparation and characterization of a novel cocrystal explosive. Cryst Growth Des 11:1759–1765CrossRefGoogle Scholar
  24. 24.
    Wang Y, Yang Z, Li H, Zhou X, Zhang Q et al (2014) A novel cocrystal explosive of HNIW with good comprehensive properties. Propellants Explos Pyrotech 39:590–596CrossRefGoogle Scholar
  25. 25.
    Chen P, Zhang L, Zhu S, Cheng G (2015) Intermolecular interactions, thermodynamic properties, crystal structure, and detonation performance of CL-20/TEX cocrystal explosive. Can J Chem 93:632–638CrossRefGoogle Scholar
  26. 26.
    Xiong S, Chen S, Jin S (2017) Molecular dynamic simulations on TKX-50/RDX cocrystal. J Mol Graph Model 74:171–176CrossRefGoogle Scholar
  27. 27.
    Xiong S, Chen S, Jin S, Zhang Z, Zhang Y, Li L (2017) Molecular dynamic simulations on TKX-50/HMX cocrystal. RSC Adv 7:6795–6799CrossRefGoogle Scholar
  28. 28.
    Zhang X, Chen S, Wu Y, Jin S, Wang X et al (2018) A novel cocrystal composed of CL-20 and an energetic ionic salt. Chem Commun 54:13268–13270CrossRefGoogle Scholar
  29. 29.
    Aldoshin SM, Aliev ZG, Goncharov TK, Milyokhin YM, Shishov NI et al (2014) Crystal structure of cocrystals 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazatetracyclo [ 5.9. 0 3.11 ]dodecane with 7H- tris −1,2,5-oxadiazolo (3,4-b:3′,4′-d:3″,4″-f) azepine. J Struct Chem 55:327–331CrossRefGoogle Scholar
  30. 30.
    Anderson SR, Dube P, Krawiec M, Salan J, Ende DJA, Samuels P (2016) Promising CL-20-based energetic material by cocrystallization. Propellants Explos Pyrotech 41:783–788CrossRefGoogle Scholar
  31. 31.
    Goncharov TK, Aliev ZG, Aldoshin SM, Dashko DV, Eva AAV et al (2015) Preparation, structure, and main properties of bimolecular crystals CL-20—DNP and CL-20—DNG. Russ Chem B 64:366–374CrossRefGoogle Scholar
  32. 32.
    Xiong S, Chen S, Jin S, Zhang C (2016) Molecular dynamics simulations on dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate/hexanitrohexaazaisowurtzitane cocrystal. RSC Adv 6:4221–4226CrossRefGoogle Scholar
  33. 33.
    Yang Z, Li H, Zhou X, Zhang C, Huang H et al (2012) Characterization and properties of a novel energetic–energetic cocrystal explosive composed of HNIW and BTF. Cryst Growth Des 12:5155–5158CrossRefGoogle Scholar
  34. 34.
    Yang Z, Wang H, Ma Y, Huang Q, Zhang J et al (2018) Isomeric Cocrystals of CL-20: a promising strategy for development of high-performance explosives. Cryst Growth Des 18:6399–6403CrossRefGoogle Scholar
  35. 35.
    Guo C, Zhang H, Wang X, Xu J, Liu Y et al (2013) Crystal structure and explosive performance of a new CL-20/caprolactam cocrystal. J Mol Struct 1048:267–273CrossRefGoogle Scholar
  36. 36.
    Lin H, Zhu S, Li H, Peng X (2013) Synthesis, characterization, AIM and NBO analysis of HMX/DMI cocrystal explosive. J Mol Struct 1048:339–348CrossRefGoogle Scholar
  37. 37.
    Lin H, Zhu S, Zhang L, Peng X, Hongzhen LI (2013) Synthesis and first principles investigation of HMX/NMP cocrystal explosive. J Energ Mater 31:261–272CrossRefGoogle Scholar
  38. 38.
    Lin H, Chen J, Zhu S, Li H, Huang Y (2017) Synthesis, characterization, detonation performance, and DFT calculation of HMX/PNO cocrystal explosive. J Energ Mater 35:95–108CrossRefGoogle Scholar
  39. 39.
    Liu N, Duan B, Lu X, Mo H, Xu M et al (2018) Preparation of CL-20/DNDAP cocrystals by a rapid and continuous spray drying method: an alternative to cocrystal formation. Cryst Eng Comm 20:2060–2067CrossRefGoogle Scholar
  40. 40.
    Pan B, Dang L, Wang Z, Jiang J, Wei H (2018) Preparation, crystal structure and solutionmediated phase transformation of a novel solidstate form of CL-20. Cryst Eng Comm 20:1553–1563CrossRefGoogle Scholar
  41. 41.
    Cady HH, Larson AC, Cromer DT (1963) The crystal structure of α-HMX and a refinement of the structure of β-HMX. Acta Cryst 16:617–623CrossRefGoogle Scholar
  42. 42.
    Choi CS, Prince E (1972) The crystal structure of cyclotrimethylenetrinitramine. Acta Crystallogr Sect B: Struct Crystallogr Cryst Chem 28:2857–2862CrossRefGoogle Scholar
  43. 43.
    Zhu WH, Xiao JJ, Ji GF, Zhao F, Xiao HM (2007) First-principles study of the four polymorphs of crystalline octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine. J Phys Chem B 111:12715–12722CrossRefGoogle Scholar
  44. 44.
    Hang GY, Yu WL, Wang T, Wang JT, Li Z (2017) Theoretical insights into the effects of molar ratios on stabilities, mechanical properties, and detonation performance of CL-20/HMX cocrystal explosives by molecular dynamics simulation. J Mol Model 23:30CrossRefGoogle Scholar
  45. 45.
    Hang GY, Yu WL, Wang T, Wang JT, Li Z (2017) Theoretical insights into effects of molar ratios on stabilities, mechanical properties and detonation performance of CL-20/RDX cocrystal explosives by molecular dynamics simulation. J Mol Struct 1141:577–583CrossRefGoogle Scholar
  46. 46.
    Bunte SW, Sun H (2000) Molecular modeling of energetic materials: the parameterization and validation of nitrate esters in the COMPASS force field. J Phys Chem B 104:2477–2489CrossRefGoogle Scholar
  47. 47.
    Sun H (1998) COMPASS: An ab initio force-field optimized for condensed-phase applications-overview with details on alkane and benzene compounds. J Phys Chem B 102:7338–7364CrossRefGoogle Scholar
  48. 48.
    Song KP, Ren FD, Zhang SH, Shi WJ (2016) Theoretical insights into the stabilities, detonation performance, and electrostatic potentials of cocrystals containing α- or β-HMX and TATB, FOX-7, NTO, or DMF in various molar ratios. J Mol Model 22:1–15CrossRefGoogle Scholar
  49. 49.
    Hang G-y, Yu W-l, Wang T, Wang J-t (2018) Theoretical investigations on the structures and properties of CL-20/TNT cocrystal and its defective models by molecular dynamics simulation. J Mol Model 24:158CrossRefGoogle Scholar
  50. 50.
    Hang G-y, Yu W-l, Wang T, Wang J-t (2019) Theoretical investigations into effects of adulteration crystal defect on properties of CL-20/TNT cocrystal explosive. Comp Mater Sci 156:77–83CrossRefGoogle Scholar
  51. 51.
    Andersen HC (1980) Molecular dynamics simulations at constant pressure and/or temperature. J Chem Phys 72:2384–2393CrossRefGoogle Scholar
  52. 52.
    Parrinello M, Rahman A (1982) Strain fluctuations and elastic constants. J Chem Phys 76:2662–2666CrossRefGoogle Scholar
  53. 53.
    Ewald PP (1921) Calculation of optic and electrostatic lattice potential. Ann Phys 64:253–287CrossRefGoogle Scholar
  54. 54.
    Hang GY, Yu WL, Wang T, Wang JT, Li Z (2018) Theoretical investigations on stabilities, sensitivity, energetic performance and mechanical properties of CL-20/NTO cocrystal explosives by molecular dynamics simulation. Theor Chem Accounts 137:114CrossRefGoogle Scholar
  55. 55.
    Stefan G (2010) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799Google Scholar
  56. 56.
    Weiner JH, Milstein F (1984) Statistical mechanics of elasticity. J Appl Mech 51:707CrossRefGoogle Scholar
  57. 57.
    Watt JP, Davies GF, O'Connell RJ (1976) The elastic properties of composite materials. Rev Geophys 14:541–563CrossRefGoogle Scholar
  58. 58.
    Swenson RJ (1983) Comments on virial theorems for bounded systems. Am J Phys 51:940–942CrossRefGoogle Scholar
  59. 59.
    Stevens LL, Eckhardt CJ (2005) The elastic constants and related properties of beta-HMX determined by Brillouin scattering. J Chem Phys 122:251CrossRefGoogle Scholar
  60. 60.
    Sun T, Xiao JJ, Liu Q, Zhaob F, Xiao HM (2014) Comparative study on structure, energetic and mechanical properties of a ε-CL-20/HMX cocrystal and its composite with molecular dynamics simulation. J Mater Chem A 2:13898CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mathematics and PhysicsUniversity of Science and Technology BeijingBeijingChina
  2. 2.Key Laboratory of Neutron Physics and Institute of Nuclear Physics and ChemistryChina Academy of Engineering Physics (CAEP)MianyangChina
  3. 3.Key Laboratory of Materials Physics, Institute of Solid State PhysicsChinese Academy of SciencesHefeiChina

Personalised recommendations