Advertisement

Assessment of dynamical properties of mercaptopurine on the peptide-based metal–organic framework in response to experience of external electrical fields: a molecular dynamics simulation

  • Mahnaz ShahabiEmail author
  • Heidar Raissi
Original Paper
  • 17 Downloads

Abstract

In this work, the effect of the external electric field (EF) on the drug delivery performance of peptide-based metal–organic framework (MPF) for 6-mercaptopurine (6-MP) drug is investigated by means of the molecular dynamics (MD) simulations. It is found that the strength interaction of drug molecule with MPF is decreased under the influence of the electric field. In other words, the adsorbed drug molecules have more tendencies for the interaction with the porous nanostructure in the absence of EF. According to the radial distribution function (RDF) patterns, the probability of finding drug molecules in terms of the intermolecular distance with respect to the MPF surface is lowest during the high field strength. As the EF strength increases, the spread of drug molecules around MPF results in high dynamics movement and further more diffusion coefficient of drug molecule in the simulation system. This result emphasizes the weak intermolecular interaction of drug molecules with MPF with the application of EF. Assessment of dynamical properties of 6-mercaptopurine in the presence of EF with various strengths reveals that the applied electric field can act as a trigger on liberation behavior of drug from the porous nanostructure.

Keywords

Molecular dynamics simulation External electric field Radial distribution function Dipole moment Mean-square displacement 

Notes

Supplementary material

894_2019_4178_MOESM1_ESM.docx (474 kb)
ESM 1 (DOCX 474 kb)

References

  1. 1.
    Zhou HC, Long JR, Yaghi OM (2012) Introduction to metal-organic frameworks. Chem Rev 112:673–674.  https://doi.org/10.1021/cr300014x CrossRefPubMedGoogle Scholar
  2. 2.
    Horcajada P, Serre C, Vallet-Reg M, Sebban M, Taulelle F, Ferey G (2006) Metal-organic frameworks as efficient materials for drug delivery. Angew Chem Int Ed 45:5974–5978.  https://doi.org/10.1002/anie.200601878 CrossRefGoogle Scholar
  3. 3.
    Tamames-Tabar C, García-Márquez A, Blanco-Prieto MJ, Serre C, Horcajada P (2015) Bio- and bioinspired nanomaterials. Wiley-VCH Verlag GmbH & Co. KGaAGoogle Scholar
  4. 4.
    Wang FM, Wang J, Yang SZ, Gu CY, Wu XR, Liu JQ, Sakiyama H, Xu JW, Luo MM, Liu WC (2017) A combination of experiment and molecular simulation studies on a new metal-organic framework showing pH-triggered drug release. Russ J Coord Chem 43(2):133–137.  https://doi.org/10.1134/S1070328417020099 CrossRefGoogle Scholar
  5. 5.
    Liu JQ et al (2014) Two isoreticular metal–organic frameworks with CdSO 4-like topology: selective gas sorption and drug delivery. Dalton Trans 43:17265–17273.  https://doi.org/10.1039/C4DT01890G CrossRefPubMedGoogle Scholar
  6. 6.
    Vasconcelos IB et al (2012) Cytotoxicity and slow release of the anti-cancer drug oxorubicin from ZIF-8. RSC Adv 2:9437–9442.  https://doi.org/10.1039/C2RA21087H CrossRefGoogle Scholar
  7. 7.
    Liu JQ et al (2015) A combined experimental and computational study of novel nanocage-based metal–organic frameworks for drug delivery. Dalton Trans 44:19370–19382.  https://doi.org/10.1039/C5DT02171E CrossRefPubMedGoogle Scholar
  8. 8.
    Li F, Li B, Wang C, Zeng Y, Liu J, Gu CY, Lue P, Meid L (2016) Encapsulation of pharmaceutical ingredient linker in metal–organic framework: combined experimental and theoretical insight into the drug delivery. RSC Adv 6:47959–47965.  https://doi.org/10.1039/C6RA06178H CrossRefGoogle Scholar
  9. 9.
    Filippousi M et al (2016) Biocompatible Zr-based nanoscale MOFs coated with modified poly(ε-caprolactone) as anticancer drug carriers. Int J Pharm 509(1–2):208–218.  https://doi.org/10.1016/j.ijpharm.2016.05.048 CrossRefPubMedGoogle Scholar
  10. 10.
    Kotzabasaki M, Tylianakis E, Klontzas E, Froudakis GE (2017) OH-functionalization strategy in metal-organic frameworks for drug delivery. Chem Phys Lett 685:114–118.  https://doi.org/10.1016/j.cplett.2017.07.053 CrossRefGoogle Scholar
  11. 11.
    Chalati T, Horcajada P, Couvreur P, Serre C, Yahia MB, Maurin G, Gref R (2011) Porous metal organic framework nanoparticles to address the challenges related to busulfan encapsulation. Nanomedicine 6(10):1683–1695.  https://doi.org/10.2217/nnm.11.69 CrossRefPubMedGoogle Scholar
  12. 12.
    Ma D-Y et al (2015) Hydrostable and nitryl/methyl-functionalized metal–organic framework for drug delivery and highly selective CO2 adsorption. Inorg Chem 54(14):6719–6726.  https://doi.org/10.1021/acs.inorgchem.5b00335 CrossRefPubMedGoogle Scholar
  13. 13.
    Koukaras EN, Montagnon T, Trikalitis P, Bikiaris D, Zdetsis AD, Froudakis GE (2014) Toward efficient drug delivery through suitably prepared metal–organic frameworks: a first-principles study. J Phys Chem C 118(17):8885–8890.  https://doi.org/10.1021/jp410282m CrossRefGoogle Scholar
  14. 14.
    Kotzabasaki M et al (2017) Multiscale simulations reveal IRMOF-74-III as a potent drug carrier for gemcitabine delivery. J Mater Chem B 5:3277–3282.  https://doi.org/10.1039/C7TB00220C CrossRefGoogle Scholar
  15. 15.
    Meng H et al (2015) Use of a lipid-coated mesoporous silica nanoparticle platform for synergistic gemcitabine and paclitaxel delivery to human pancreatic cancer in mice. ACS Nano 9(4):3540.  https://doi.org/10.1021/acsnano.5b00510 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Celia C, Malara N, Terracciano R, Cosco D, Paolino D, Fresta M, Savino R (2008) Liposomal delivery improves the growth-inhibitory and apoptotic activity of low doses of gemcitabine in multiple myeloma cancer cells. Nanomedicine 4(2):155–166.  https://doi.org/10.1016/j.nano.2008.02.003 CrossRefPubMedGoogle Scholar
  17. 17.
    Imaz I, Rubio-Martinez M, An J, Sole-Font I, Rosi NL, Maspoch D (2011) Metal–biomolecule frameworks (MBioFs). Chem Commun 47:7287–7302.  https://doi.org/10.1039/C1CC11202C CrossRefGoogle Scholar
  18. 18.
    Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry5th ednGoogle Scholar
  19. 19.
    Rojas S, Devicb T, Horcajada P (2017) Metal organic frameworks based on bioactive components. J Mater Chem B 5:2560–2573.  https://doi.org/10.1039/C6TB03217F CrossRefGoogle Scholar
  20. 20.
    Katsoulidis AP, Park KS, Antypov D, Martí-Gastaldo C, Miller GJ, Warren JE, Purton JA (2014) Guest-adaptable and water-stable peptide-based porous materials by imidazolate side chain control. Angew Chem 53(1):193–198.  https://doi.org/10.1002/anie.201307074 CrossRefGoogle Scholar
  21. 21.
    Schmid R (2017) An electric field induced breath for metal–organic frameworks. ACS Cent Sci 3(5):369–371.  https://doi.org/10.1021/acscentsci.7b00162 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Sahasranaman S, Howard D, Roy S (2008) Clinical pharmacology and pharmacogenetics of thiopurines. Eur J Clin Pharmacol 64:753–767.  https://doi.org/10.1007/s00228-008-0478-6 CrossRefPubMedGoogle Scholar
  23. 23.
    Nielsen OH, Vainer B, Rask-Madsen J (2001) The treatment of inflammatory bowel disease with 6-mercaptopurine or azathioprine. Aliment Pharmacol Ther 15:1699–1708.  https://doi.org/10.1046/j.1365-2036.2001.01102.x CrossRefPubMedGoogle Scholar
  24. 24.
    Brooks BR, Brooks CL, MacKerell AD, Nilsson L, Petrella RJ, Roux B, Caflisch A (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614.  https://doi.org/10.1002/jcc.21287 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Zoete V, Cuendet MA, Grosdidier A, Michielin O (2011) Swiss Param: a fast force field generation tool for small organic molecules. J Comput Chem 32:2359–2368.  https://doi.org/10.1002/jcc.21816 CrossRefPubMedGoogle Scholar
  26. 26.
    Cohen AJ, Sanchez PM, Yang W (2008) Insights into current limitations of density functional theory. Science 321(5890):792–794.  https://doi.org/10.1126/science.1158722 CrossRefPubMedGoogle Scholar
  27. 27.
    Yang S, Chen C, Chen Y, Li J, Wang D, Wang X, Hu W (2015) Competitive adsorption of PbII, NiII, and SrII ions on graphene oxides: a combined experimental and theoretical study. Chem Plus Chem 80:480–484.  https://doi.org/10.1002/cplu.201402284 CrossRefGoogle Scholar
  28. 28.
    Schmidt MW et al (1993) General at structure system. J Comput Chem 14(11):1347–1363.  https://doi.org/10.1002/jcc.540141112 CrossRefGoogle Scholar
  29. 29.
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926.  https://doi.org/10.1063/1.445869 CrossRefGoogle Scholar
  30. 30.
    Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindah E (2015) Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. Software X 1–2:19–25.  https://doi.org/10.1016/j.softx.2015.06.001 CrossRefGoogle Scholar
  31. 31.
    Hashemzadeh H, Raissi H (2018) Covalent organic framework as smart and high efficient carrier for anticancer drug delivery: a DFT calculations and molecular dynamics simulation study. J Phys D 51:345401.  https://doi.org/10.1088/1361-6463/aad3e8 CrossRefGoogle Scholar
  32. 32.
    Jones DE, Lund AM, Ghandehari H, Facelli JC (2016) Molecular dynamics simulations in drug delivery research: calcium chelation of G3.5 PAMAM dendrimers. Cogent Chem 2:1229830.  https://doi.org/10.1080/23312009.2016.1229830 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Samanta S, Roccatano D (2013) Interaction of curcumin with PEO–PPO–PEO block copolymers: a molecular dynamics study. J Phys Chem B 117(11):3250–3257.  https://doi.org/10.1021/jp309476u CrossRefPubMedGoogle Scholar
  34. 34.
    Ghadamgahi M, Ajloo D (2014) Molecular dynamic insight into the ethanol effect on tretinoin drug delivery through carbon nanotubes. J Nanostruct Chem 4(1):91CrossRefGoogle Scholar
  35. 35.
    Mousavi SZ, Amjad-Iranagh S, Nademi Y, Modarress H (2013) Carbon nanotube-encapsulated drug penetration through the cell membrane: an investigation based on steered molecular dynamics simulation. J Membr Biol 246(9):697–704.  https://doi.org/10.1007/s00232-013-9587-y CrossRefPubMedGoogle Scholar
  36. 36.
    Hasanzade Z, Raissi H (2018) Density functional theory calculations and molecular dynamics simulations of the adsorption of ellipticine anticancer drug on graphene oxide surface in aqueous medium as well as under controlled pH conditions. J Mol Liq 255:269–278.  https://doi.org/10.1016/j.molliq.2018.01.159 CrossRefGoogle Scholar
  37. 37.
    Hasanzade Z, Raissi H (2017) Solvent/co-solvent effects on the electronic properties and adsorption mechanism of anticancer drug thioguanine on graphene oxide surface as a nanocarrier: density functional theory investigation and a molecular dynamics. Appl Surf Sci 422:1030–1041.  https://doi.org/10.1016/j.apsusc.2017.05.245 CrossRefGoogle Scholar
  38. 38.
    García-Toral D, González-Melchor M, Rivas-Silva JF, Meneses-Juárez E, Cano-Ordaz J, H Cocoletzi G (2018) Dopamine and caffeine encapsulation within boron nitride (14, 0) nanotubes: classical molecular dynamics and first principles calculations. J Phys Chem B 122(22):5885–5896.  https://doi.org/10.1021/acs.jpcb.8b00116 CrossRefPubMedGoogle Scholar
  39. 39.
    Kumari R, Kumar R, Lynn AG (2014) Mmpbsa—a GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model 54:1951–1962.  https://doi.org/10.1021/ci500020m CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chemistry DepartmentUniversity of BirjandBirjandIran

Personalised recommendations