Advertisement

Journal of Molecular Modeling

, 25:282 | Cite as

Investigation of reorganization of a nanocrystalline grain boundary network during biaxial creep deformation of nanocrystalline Ni using molecular dynamics simulation

  • Snehanshu PalEmail author
  • Md. Meraj
Original Paper
  • 81 Downloads

Abstract

In this paper, simulated biaxial creep deformation behaviour for nanocrystalline (NC) nickel (Ni) has been performed at various applied load (i.e. 1 GPa, 1.4 GPa, 2 GPa, 2.5 GPa and 3 GPa) for a particular temperature (i.e. 1210 K) using molecular dynamics (MD) simulation to investigate underlying deformation mechanism based on the structural evolution during biaxial creep process. Primary, secondary and tertiary stages of creep are observed to be exhibited significantly only at 3 GPa applied stress. While, only primary and secondary stages of creep are exhibited at 1 GPa applied stress. Atomic structural evaluation, dislocation density, shear strains, atomic trajectory, inverse pole figures and grain orientation with texture distribution have been carried out to evaluate structural evolution. Stress exponent (m) for NC Ni is analysed for a particular creep temperature (i.e. 1210 K) and obtained m value is 1.30. According to shear strains counter plot, accumulation of higher shear strains are observed at grain boundary (GB) during biaxial creep deformation. It is found that dislocation density during biaxial creep is increased with the progress of creep process. Grain rotation and texture evaluation during biaxial creep process are studied using grain tracking algorithm (GTA). Grain rotation in ultrafine-grained NC Ni specimen during biaxial creep deformation is happened and exhibits almost distinct distribution, which is occurred due to the atomic shuffling within the GBs. Grain growth of ultrafine grained NC Ni is observed during biaxial creep deformation which is caused by mechanical stress.

Keywords

Biaxial creep Molecular dynamics Nanocrystalline Diffusion control creep Nickel 

Notes

References

  1. 1.
    Murty BS, Shankar P, Raj B, Rath BB, Murdayet J (2013) Textbook of nanoscience and nanotechnology. Springer Science & Business Media, HyderabadGoogle Scholar
  2. 2.
    Kelsall R, Hamley IW, Geoghegan M (2005) Nanoscale science and technology. Wiley, ChichesterGoogle Scholar
  3. 3.
    Yue Y, Liu P, Deng Q, Ma E, Zhang Z, Han X (2012) Quantitative evidence of crossover toward partial dislocation mediated plasticity in copper single crystalline nanowires. Nano Lett 12(8):4045–4049PubMedGoogle Scholar
  4. 4.
    Yong-Hai Y, Li-Hua W, Ze Z, Xiao-Dong H (2012) Cross-over of the plasticity mechanism in nanocrystalline Cu. Chin Phys Lett 29(6):066201Google Scholar
  5. 5.
    Wang L, Zhang Z, Han X (2013) In situ experimental mechanics of nanomaterials at the atomic scale. NPG Asia Mater 5(2):1–11Google Scholar
  6. 6.
    Kang W, Merrill M, Wheeler JM (2017) In situ thermomechanical testing methods for micro/nano-scale materials. Nanoscale 9(8):2666–2688PubMedGoogle Scholar
  7. 7.
    Pal S, Meraj M, Deng C (2017) Effect of Zr addition on creep properties of ultra-fine grained nanocrystalline Ni studied by molecular dynamics simulations. Comput Mater Sci 126:382–392Google Scholar
  8. 8.
    Chokshi AH (2003) Diffusion, diffusion creep and grain growth characteristics of nanocrystalline and fine-grained monoclinic, tetragonal and cubic zirconia. Scr Mater 48(6):791–796Google Scholar
  9. 9.
    Choi IC, Kim YJ, Seok MY, Yoo BG, Kim JY, Wang Y, Jang JI (2013) Nanoscale room temperature creep of nanocrystalline nickel pillars at low stresses. Int J Plast 41:53–64Google Scholar
  10. 10.
    Karanjgaokar N, Stump F, Geubelle P, Chasiotis I (2013) A thermally activated model for room temperature creep in nanocrystalline Au films at intermediate stresses. Scr Mater 68(8):551–554Google Scholar
  11. 11.
    Li J, Zhang JY, Zhang P, Wu K, Liu G, Sun J (2016) Grain size effects on microstructural stability and creep behaviour of nanotwinned Ni free-standing foils at room temperature. Philos Mag 96(29):3016–3040Google Scholar
  12. 12.
    Darling KA, Rajagopalan M, Komarasamy M, Bhatia MA, Hornbuckle BC, Mishra RS, Solanki KN (2016) Extreme creep resistance in a microstructurally stable nanocrystalline alloy. Nature 537(7620):378–381PubMedGoogle Scholar
  13. 13.
    Karanjgaokar N, Chasiotis I (2016) Creep behavior of nanocrystalline Au films as a function of temperature. J Mater Sci 51(8):3701–3714Google Scholar
  14. 14.
    Tian L (2017) A short review on mechanical behavior of nanocrystalline materials. Int J Metall Met Phys 2(1):1–13Google Scholar
  15. 15.
    Mo K, Lv W, Tung HM, Yun D, Miao Y, Lan KC, Stubbins JF (2016) Biaxial thermal creep of alloy 617 and alloy 230 for VHTR applications. J Eng Mater Technol 138(3):031015Google Scholar
  16. 16.
    Sakane M, Tokura H (2002) Experimental study of biaxial creep damage for type 304 stainless steel. Int J Damage Mech 11(3):247–262Google Scholar
  17. 17.
    Kobayashi H, Ohki R, Itoh T, Sakane M (2017) Multiaxial creep damage and lifetime evaluation under biaxial and triaxial stresses for type 304 stainless steel. Eng Fract Mech 174:30–43Google Scholar
  18. 18.
    Tung HM, Mo K, Stubbins JF (2014) Biaxial thermal creep of Inconel 617 and Haynes 230 at 850 and 950°C. J Nucl Mater 447(1–3):28–37Google Scholar
  19. 19.
    Mathew MD, Ravi S, Vijayanand VD, Latha S, Dasgupta A, Laha K (2014) Biaxial creep deformation behavior of Fe–14Cr–15Ni–Ti modified austenitic stainless steel fuel cladding tube for sodium cooled fast reactor. Nucl Eng Des 275:17–22Google Scholar
  20. 20.
    Kurtz RJ, Hamilton ML (2000) Biaxial thermal creep of V–4Cr–4Ti at 700 C and 800 C. J Nucl Mater 283:628–632Google Scholar
  21. 21.
    Li Y, Li S, Huang M, Li Z (2015) Analytical solution for Coble creep in polycrystalline materials under biaxial loading. Mech Mater 91(1):290–294Google Scholar
  22. 22.
    Peter D, Pfetzing J, Wagner MX, Eggeler G (2009) Microstructural anisotropy, uniaxial and biaxial creep behavior of Ti–45Al–5Nb–0.2 B–0.2 C. Mater Sci Eng A 510:368–372Google Scholar
  23. 23.
    Li M, Nagasaka T, Hoelzer DT, Grossbeck ML, Zinkle SJ, Muroga T, Fukumoto K, Matsui H, Narui M (2007) Biaxial thermal creep of two heats of V4Cr4Ti at 700 and 800 C in a liquid lithium environment. J Nucl Mater 367:788–793Google Scholar
  24. 24.
    Hyde TH, Sun W (2006) Creep failure behaviour of a 9CrMoNbV weld metal with anisotropy under a biaxial loading state. J Strain Anal Eng Des 41(5):369–380Google Scholar
  25. 25.
    Murty KL, Tanikella BV, Earthman JC (1994) Effect of grain shape and texture on equi-biaxial creep of stress relieved and recrystallized zircaloy-4. Acta Metall Mater 42(11):3653–3661Google Scholar
  26. 26.
    Murthy KL (1992) Biaxial creep behavior of textured zircaloy tubing. JOM 44(2):49–55Google Scholar
  27. 27.
    Trivaudey F, Delobelle P (1990) High temperature creep damage under biaxial loading—part I: experiments. J Eng Mater Technol 112(4):442–449Google Scholar
  28. 28.
    Murty KL, Adams BL (1985) Biaxial creep of textured zircaloy I: experimental and phenomenological descriptions. Mater Sci Eng 70:169–180Google Scholar
  29. 29.
    Kumar KS, Swygenhoven HV, Suresh S (2003) Mechanical behavior of nanocrystalline metals and alloys. Acta Mater 51(19):5743–5774Google Scholar
  30. 30.
    Meyers MA, Mishra A, Benson DJ (2006) Mechanical properties of nanocrystalline materials. Prog Mater Sci 51(4):427–556Google Scholar
  31. 31.
    Schiotz J, Di Tolla FD, Jacobsen KW (1998) Softening of nanocrystalline metals at very small grain sizes. Nature 391(6667):561–563Google Scholar
  32. 32.
    Schiotz J, Vegge T, Di Tolla FD, Jacobsen KW (1999) Atomic-scale simulations of the mechanical deformation of nanocrystalline metals. Phys Rev B 60(17):11971Google Scholar
  33. 33.
    Swygenhoven HV, Derlet PM (2001) Grain-boundary sliding in nanocrystalline fcc metals. Phys Rev B 64(22):224105Google Scholar
  34. 34.
    Ke M, Hackney SA, Milligan WW, Aifantis EC (1995) Observation and measurement of grain rotation and plastic strain in nanostructured metal thin films. Nanostruct Mater 5(6):689–697Google Scholar
  35. 35.
    Shan Z, Stach EA, Wiezorek JMK, Knapp JA, Follstaedt DM, Mao SX (2004) Grain boundary-mediated plasticity in nanocrystalline nickel. Science 305(5684):654–657PubMedGoogle Scholar
  36. 36.
    Farkas D, Mohanty S, Monk J (2007) Linear grain growth kinetics and rotation in nanocrystalline Ni. Phys Rev Lett 98(16):165502PubMedGoogle Scholar
  37. 37.
    Cahn JW, Taylor JE (2004) A unified approach to motion of grain boundaries, relative tangential translation along grain boundaries, and grain rotation. Acta Mater 52(16):4887–4898Google Scholar
  38. 38.
    Legros M, Gianola DS, Hemker KJ (2008) In situ TEM observations of fast grain-boundary motion in stressed nanocrystalline aluminum films. Acta Mater 56(14):3380–3393Google Scholar
  39. 39.
    Rupert TJ, Gianola DS, Gan Y, Hemker KJ (2009) Experimental observations of stress-driven grain boundary migration. Science 326(5960):1686–1690PubMedGoogle Scholar
  40. 40.
    Upmanyu M, Srolovitz DJ, Lobkovsky AE, Warren JA, Carter WC (2006) Simultaneous grain boundary migration and grain rotation. Acta Mater 54(7):1707–1719Google Scholar
  41. 41.
    Panzarino JF, Ramos JJ, Rupert TJ (2015) Quantitative tracking of grain structure evolution in a nanocrystalline metal during cyclic loading. Model Simul Mater Sci Eng 23(2):025005Google Scholar
  42. 42.
    Hasnaoui A, Swygenhoven HV, Derlet PM (2002) Cooperative processes during plastic deformation in nanocrystalline fcc metals: a molecular dynamics simulation. Phys Rev B 66(18):184112Google Scholar
  43. 43.
    Rupert TJ (2013) Strain localization in a nanocrystalline metal: atomic mechanisms and the effect of testing conditions. J Appl Phys 114(3):033527Google Scholar
  44. 44.
    Haque MA, Saif MTA (2005) In situ tensile testing of nanoscale freestanding thin films inside a transmission electron microscope. J Mater Res 20(7):1769–1777Google Scholar
  45. 45.
    Zheng K, Han X, Wang L, Zhang Y, Yue Y, Qin Y, Zhang X, Zhang Z (2009) Atomic mechanisms governing the elastic limit and the incipient plasticity of bending Si nanowires. Nano Lett 9(6):2471–2476PubMedGoogle Scholar
  46. 46.
    Yue Y, Liu P, Zhang Z, Han X, Ma E (2011) Approaching the theoretical elastic strain limit in copper nanowires. Nano Lett 11(8):3151–3155PubMedGoogle Scholar
  47. 47.
    Wang L, Lu Y, Kong D, Xiao L, Sha X, Sun J, Zhang Z, Han X (2015) Dynamic and atomic-scale understanding of the twin thickness effect on dislocation nucleation and propagation activities by in situ bending of Ni nanowires. Acta Mater 90:194–203Google Scholar
  48. 48.
    Han X, Wang L, Yue Y, Zhang Z (2015) In situ atomic scale mechanical microscopy discovering the atomistic mechanisms of plasticity in nano-single crystals and grain rotation in polycrystalline metals. Ultramicroscopy 151:94–100PubMedGoogle Scholar
  49. 49.
    Wang J, Zeng Z, Weinberger CR, Zhang Z, Zhu T, Mao SX (2015) In situ atomic-scale observation of twinning-dominated deformation in nanoscale body-centred cubic tungsten. Nat Mater 14(6):594PubMedGoogle Scholar
  50. 50.
    Wang L, Teng J, Sha X, Zou J, Zhang Z, Han X (2017) Plastic deformation through dislocation saturation in ultrasmall Pt nanocrystals and its in situ atomistic mechanisms. Nano Lett 17(8):4733–4739PubMedGoogle Scholar
  51. 51.
    Bhatia MA, Mathaudhu SN, Solanki KN (2015) Atomic-scale investigation of creep behavior in nanocrystalline Mg and Mg–Y alloys. Acta Mater 99:382–391Google Scholar
  52. 52.
    Pal S, Meraj M (2016) Structural evaluation and deformation features of interface of joint between nano-crystalline Fe–Ni–Cr alloy and nano-crystalline Ni during creep process. Mater Des 108:168–182Google Scholar
  53. 53.
    Meraj M, Pal S (2016) The effect of temperature on creep behaviour of porous (1 at.%) nano crystalline nickel. Trans Indian Inst Metals 69(2):277–282Google Scholar
  54. 54.
    Meraj M, Yedla N, Pal S (2016) The effect of porosity and void on creep behavior of ultra-fine grained nano crystalline nickel. Mater Lett 169:265–268Google Scholar
  55. 55.
    Nie K, Wu WP, Zhang XL, Yang SM (2017) Molecular dynamics study on the grain size, temperature, and stress dependence of creep behavior in nanocrystalline nickel. J Mater Sci 52(4):2180–2191Google Scholar
  56. 56.
    Meraj M, Pal S (2017) Healing mechanism of nanocrack in nanocrystalline metals during creep process. Appl Phys A Mater Sci Process 123(2):138Google Scholar
  57. 57.
    Meraj M, Pal S (2017) Nano-scale simulation based study of creep behavior of bimodal nanocrystalline face centered cubic metal. J Mol Model 23(11):309PubMedGoogle Scholar
  58. 58.
    Meraj M, Pal S (2017) Comparative creep behaviour study between single crystal nickel and ultra-fine grained nano crystalline nickel in presence of porosity at 1120 K temperature. Metall Res Technol 114(1):107Google Scholar
  59. 59.
    Meraj M, Pal S (2017) Effect of temperature and stress on creep behavior of ultrafine grained nanocrystalline Ni-3 at% Zr alloy. Met Mater Int 23(2):272–282Google Scholar
  60. 60.
    Pal S, Mishra S, Meraj M, Mondal AK, Ray BC (2018) On the comparison of interrupted and continuous creep behaviour of nanocrystalline copper: a molecular dynamics approach. Mater Lett 229:256–260Google Scholar
  61. 61.
    Saha S, Motalab M (2018) Nature of creep deformation in nanocrystalline tungsten. Comput Mater Sci 149:360–372Google Scholar
  62. 62.
    Yamakov V, Wolf D, Phillpot SR, Gleiter H (2002) Grain-boundary diffusion creep in nanocrystalline palladium by molecular-dynamics simulation. Acta Mater 50(1):61–73Google Scholar
  63. 63.
    Millett PC, Desai T, Yamakov V, Wolf D (2008) Atomistic simulations of diffusional creep in a nanocrystalline body-centered cubic material. Acta Mater 56(14):3688–3698Google Scholar
  64. 64.
    Wang YJ, Ishii A, Ogata S (2011) Transition of creep mechanism in nanocrystalline metals. Phys Rev B 84(22):224102Google Scholar
  65. 65.
    Wang YJ, Ishii A, Ogata S (2013) Entropic effect on creep in nanocrystalline metals. Acta Mater 61(10):3866–3871Google Scholar
  66. 66.
    Chen D (1995) Structural modeling of nanocrystalline materials. Comput Mater Sci 3(3):327–333Google Scholar
  67. 67.
    Nose S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81(1):511–519Google Scholar
  68. 68.
    Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31(3):1695Google Scholar
  69. 69.
    Berendsen HJ, Postma JV, van Gunsteren WF, DiNola ARHJ, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690Google Scholar
  70. 70.
    Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19Google Scholar
  71. 71.
    Mendelev MI, Kramer MJ, Hao SG, Ho KM, Wang CZ (2012) Development of interatomic potentials appropriate for simulation of liquid and glass properties of NiZr2 alloy. Philos Mag 92(35):4454–4469Google Scholar
  72. 72.
    Stukowski A (2009) Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model Simul Mater Sci Eng 18(1):015012Google Scholar
  73. 73.
    Panzarino JF, Rupert TJ (2014) Tracking microstructure of crystalline materials: a post-processing algorithm for atomistic simulations. JOM 66(3):417–428Google Scholar
  74. 74.
    Wang N, Wang Z, Aust KT, Erb U (1997) Room temperature creep behavior of nanocrystalline nickel produced by an electrodeposition technique. Mater Sci Eng A 237(2):150–158Google Scholar
  75. 75.
    Luthy H, White RA, Sherby OD (1979) Grain boundary sliding and deformation mechanism maps. Mater Sci Eng 39(2):211–216Google Scholar
  76. 76.
    Coble RL (1963) A model for boundary diffusion controlled creep in polycrystalline materials. J Appl Phys 34(6):1679–1682Google Scholar
  77. 77.
    Lifshitz IM (1963) On the theory of diffusion-viscous flow of polycrystalline bodies. Soviet Physics JETP 17(4):909Google Scholar
  78. 78.
    Gianola DS, Van Petegem S, Legros M, Brandstetter S, Van Swygenhoven H, Hemker KJ (2006) Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films. Acta Mater 54(8):2253–2263Google Scholar
  79. 79.
    Kassner ME, Smith KK, Campbell CS (2015) Low-temperature creep in pure metals and alloys. J Mater Sci 50(20):6539–6551Google Scholar
  80. 80.
    Reddy KV, Pal S (2018) Influence of dislocations, twins, and stacking faults on the fracture behavior of nanocrystalline Ni nanowire under constant bending load: a molecular dynamics study. J Mol Model 24(10):277PubMedGoogle Scholar
  81. 81.
    Gutkin MY, Ovid’ko IA, Skiba NV (2003) Crossover from grain boundary sliding to rotational deformation in nanocrystalline materials. Acta Mater 51(14):4059–4071Google Scholar
  82. 82.
    Ovid’ko IA, Sheinerman AG (2008) Special rotational deformation in nanocrystalline metals and ceramics. Scr Mater 59(1):119–122Google Scholar
  83. 83.
    Xu W, Dai P, Wu X (2010) Effect of stress-induced grain growth during room temperature tensile deformation on ductility in nanocrystalline metals. Bull Mater Sci 33(5):561–568Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringNational Institute of Technology RourkelaRourkelaIndia
  2. 2.Department of Mechanical EngineeringG H Raisoni Academy of Engineering & TechnologyNagpurIndia

Personalised recommendations