Journal of Molecular Modeling

, 25:288 | Cite as

H2 adsorptions to CuRg (Rg = He-Kr) cation I and II series

  • Li XinyingEmail author
  • Cao Xue
Original Paper


Structures and stabilities of H2 adsorption to CuRg (Rg = He-Kr) cation I and II series are performed at CCSD(T) theoretical level with extended basis sets. “T-shaped” structures of H2 adsorptions to Cu or Rg atoms with different dissociation energies can be found (H2-CuRgQ or H2-RgCuQ). Further calculations confirm the adsorptions of two H2 ligands (H2-CuKrQ-H2). The Rg = Kr series show enhanced stabilities and good dehydrogenation abilities, suggesting potential applications in hydrogen storage applications.


H2 adsorption Dissociation energy IR intensity 


Funding information

This study received financial support from the NSFC (No. U1404210) and HASTIT (No. 15HASTIT015).


  1. 1.
    Ouyang LZ, Xu YJ, Dong HW, Sun LX, Zhu M (2009). Int J Hydrogen Energ 34:9671CrossRefGoogle Scholar
  2. 2.
    Huang JM, Ouyang LZ, Wen YJ, Wang H, Liu JW, Chen ZL, Zhu M (2014). Int J Hydrogen Energ 39:6813CrossRefGoogle Scholar
  3. 3.
    Aydin K, Kenanoğlu R (2018). Int J Hydrogen Energ 43:14047CrossRefGoogle Scholar
  4. 4.
    Ouyang LZ, Yang XS, Zhu M, Liu JW, Dong HW, Sun DL, Zou J, Yao XD (2014). J Phys Chem C 118:7808CrossRefGoogle Scholar
  5. 5.
    Chen B, Chen S, Bandal HA, Appiah-Ntiamoah R, Jadhav AR, Kim H (2018). Int J Hydrogen Energ 43:9296CrossRefGoogle Scholar
  6. 6.
    Schlapbach L (2002). Mater Res Soc Bull 27:675CrossRefGoogle Scholar
  7. 7.
    Dinca M, Long JR (2008). Angew Chem Int Ed 47:6766CrossRefGoogle Scholar
  8. 8.
    Murray JS, Politzer P (2017). WIREs Comput Mol Sci 7:e1326CrossRefGoogle Scholar
  9. 9.
    Li X, Cao X (2018). Int J Hydrogen Energ 43:1709CrossRefGoogle Scholar
  10. 10.
    Li X, Cao X (2018). Int J Hydrogen Energ 43:20892CrossRefGoogle Scholar
  11. 11.
    E. Wahlström, Miljöreisker (Schildts, Helsinki, 1994), p. 105Google Scholar
  12. 12.
    Puzzarini C, Peterson KA (2005). Chem Phys 311:177CrossRefGoogle Scholar
  13. 13.
    Chalasiński G, Szczęśnial MM (1994). Chem Rev 94:1723CrossRefGoogle Scholar
  14. 14.
    Peterson KA, Puzzarini C (2005). Theor Chem Accounts 114:283CrossRefGoogle Scholar
  15. 15.
    Peterson KA, Figgen D, Goll E, Stoll H, Dolg M (2003). J Chem Phys 119:11113CrossRefGoogle Scholar
  16. 16.
    Woon DE, Dunning TH (1993). J Chem Phys 98:1358CrossRefGoogle Scholar
  17. 17.
    M.J. Frisch, G.W. Trucks, et al, Gaussian 03W, (Gaussian, Inc., Pittsburgh, PA, 2003)Google Scholar
  18. 18.
    Boys SF, Bernardi F (1970). Mol Phys 19:553CrossRefGoogle Scholar
  19. 19.
    Xinying L, Xue C, Yongfang Z (2009). Aust J Chem 62:121CrossRefGoogle Scholar
  20. 20.
    Xinying L, Xue C, Yongfang Z (2009). J Phys B Atomic Mol Phys 42:065102CrossRefGoogle Scholar
  21. 21.
    Xinying L, Xiuying C, Xue C (2012). Struct Chem 23:1831CrossRefGoogle Scholar
  22. 22.
    Xinying L (2012). J Mol Model 18:1003CrossRefGoogle Scholar
  23. 23.
    Jerabek P, von der Esch B, Schmidbaur H, Schwerdtfeger P (2017). Inorg Chem 56:14624CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Computational Materials Science, School of Physics and ElectronicsHenan UniversityKaifengPeople’s Republic of China
  2. 2.National Demonstration Center for Experimental Physics and Electronics EducationHenan UniversityKaifengPeople’s Republic of China

Personalised recommendations