Advertisement

Journal of Molecular Modeling

, 25:283 | Cite as

DFT studies on nitrogen-rich pyrazino [2, 3-e] [1, 2, 3, 4] tetrazine–based high–energy density compounds

  • Raza Ullah Khan
  • Simin Zhu
  • Weihua ZhuEmail author
Original Paper

Abstract

By using the density functional theory method, we investigated the heats of formation (HOFs), electronic structure, detonation properties, thermal stability and sensitivity for a set of pyrazino [2, 3-e] [1, 2, 3, 4] tetrazine derivatives with different substituents and different numbers of N-oxides. Our findings reveal that the HOFs of the derivatives decrease dramatically with the increasing number of N-oxides. The effects of the substituents on the HOMO-LUMO gaps are coupled with those of the N-oxides. The calculated detonation properties point out that −NF2, −ONO2 and an increasing number of N-oxides are very helpful for improving the detonation performance of the designed derivatives. The bond dissociation energies of the weakest bonds indicate that a majority of our designed compounds have better thermal stability. The −NH2 group is very useful to decrease the free space value. Most of the derivatives have higher h50 values compared with parent molecules. Considering the sensitivity, thermal stability and detonation performance, four compounds could be considered as potential candidates of high–energy density compounds.

Keywords

Density functional theory Pyrazino [2, 3-e] [1, 2, 3, 4] tetrazine derivatives N-Oxide Heats of formation Detonation properties Bond dissociation energy Impact sensitivity 

Notes

Funding information

This work was supported by the National Natural Science Foundation of China (Grant No. 21773119) and Science Challenging Program (No. TZ2016001).

Supplementary material

894_2019_4167_MOESM1_ESM.docx (40 kb)
ESM 1 (DOCX 40 kb)

References

  1. 1.
    Millar RW, Philbin SP, Claridge RP, Hamid J (2004) Studies of novel heterocyclic insensitive high explosive compounds: pyridines, pyrimidines, pyrazines and their bicyclic analogues. Propellants, Explosives, Pyrotechnics: An International Journal Dealing with Scientific and Technological Aspects of Energetic Materials 29(2):81–92CrossRefGoogle Scholar
  2. 2.
    Badgujar D, Talawar M, Asthana S, Mahulikar P (2008) Advances in science and technology of modern energetic materials: an overview. J Hazard Mater 151(2–3):289–305CrossRefGoogle Scholar
  3. 3.
    Pichtel J (2012) Distribution and fate of military explosives and propellants in soil: a review. Applied and Environmental Soil Science:2012Google Scholar
  4. 4.
    Churakov AM, Smirnov OY, Ioffe SL, Strelenko YA, Tartakovsky VA (2002) Benzo-1, 2, 3, 4-tetrazine 1, 3-dioxides: synthesis and NMR study. Eur J Org Chem 2002(14):2342–2349CrossRefGoogle Scholar
  5. 5.
    He P, Zhang J-G, Wang K, Yin X, Jin X, Zhang T-L (2015) Extensive theoretical studies on two new members of the FOX-7 family: 5-(dinitromethylene)-1, 4-dinitramino-tetrazole and 1, 1′-dinitro-4, 4′-diamino-5, 5′-bitetrazole as energetic compounds. Phys Chem Chem Phys 17(8):5840–5848CrossRefGoogle Scholar
  6. 6.
    Klapötke TM, Mayer P, Schulz A, Weigand JJ (2005) 1, 5-Diamino-4-methyltetrazolium dinitramide. J Am Chem Soc 127(7):2032–2033CrossRefGoogle Scholar
  7. 7.
    W-p L, Lian P, Liu Y-z YT, Zhu W-l, Z-x G, Lv J (2014) Design and theoretical study of 15 novel high energy density compounds. J Mol Model 20(11):2479CrossRefGoogle Scholar
  8. 8.
    Talawar M, Sivabalan R, Senthilkumar N, Prabhu G, Asthana S (2004) Synthesis, characterization and thermal studies on furazan- and tetrazine-based high energy materials. J Hazard Mater 113(1–3):11–25CrossRefGoogle Scholar
  9. 9.
    Tan B, Huang M, Huang H, Long X, Li J, Nie F, Huang J (2013) Theoretical investigation of several 1, 2, 3, 4-tetrazine-based high-energy compounds. Propellants, Explosives, Pyrotechnics 38(3):372–378CrossRefGoogle Scholar
  10. 10.
    Vij A, Wilson WW, Vij V, Tham FS, Sheehy JA, Christe KO (2001) Polynitrogen chemistry. Synthesis, characterization, and crystal structure of surprisingly stable fluoroantimonate salts of N5+. J Am Chem Soc 123(26):6308–6313CrossRefGoogle Scholar
  11. 11.
    Liu H, Du H, Wang G, Liu Y, Gong X (2012) Molecular design of new nitramine explosives: 1, 3, 5, 7-tetranitro-8-(nitromethyl)-4-imidazolino [4, 5-b] 4-imidazolino-[4, 5-e] pyridine and its N-oxide. J Mol Model 18(4):1325–1331CrossRefGoogle Scholar
  12. 12.
    Lai W-P, Lian P, Yu T, Chang H-B, Xue Y-Q (2011) Design and density functional theoretical study of three novel pyrazine-based high-energy density compounds. Computational and Theoretical Chemistry 963(1):221–226CrossRefGoogle Scholar
  13. 13.
    He P, Zhang J-G, Wang K, Yin X, Zhang T-L (2015) Combination multinitrogen with good oxygen balance: molecule and synthesis design of polynitro-substituted tetrazolotriazine-based energetic compounds. The Journal of Organic Chemistry 80(11):5643–5651CrossRefGoogle Scholar
  14. 14.
    Huynh MHV, Hiskey MA, Hartline EL, Montoya DP, Gilardi R (2004) Polyazido high-nitrogen compounds: hydrazo- and azo-1, 3, 5-triazine. Angew Chem Int Ed 43(37):4924–4928CrossRefGoogle Scholar
  15. 15.
    Pagoria PF, Lee GS, Mitchell AR, Schmidt R (2001) Synthesis of amino- and nitro-substituted heterocycles as insensitive energetic materials. Lawrence Livermore National Lab, CA (US)Google Scholar
  16. 16.
    Licht H, Ritter H (1988) 2, 4, 6-Trinitropyridine and related compounds, synthesis and characterization. Propellants, explosives, pyrotechnics 13(1):25–29CrossRefGoogle Scholar
  17. 17.
    Chavez DE, Hiskey MA (1998) Synthesis of the bi-heterocyclic parent ring system 1, 2, 4-triazolo [4, 3-b][1, 2, 4, 5] tetrazine and some 3, 6-disubstituted derivatives. J Heterocyclic Chem 35(6):1329–1332CrossRefGoogle Scholar
  18. 18.
    Deswal S, Ghule VD, Kumar TR, Radhakrishnan S (2015) Quantum-chemical design of tetrazolo [1, 5-b][1, 2, 4, 5] tetrazine based nitrogen-rich energetic materials. Computational and Theoretical Chemistry 1054:55–62CrossRefGoogle Scholar
  19. 19.
    Kiselev V, Gritsan N, Zarko V, Kalmykov P, Shandakov V (2007) Multilevel quantum chemical calculation of the enthalpy of formation of [1, 2, 5] oxadiazolo [3, 4-e][1, 2, 3, 4]-tetrazine-4, 6-di-N-dioxide. Combustion, Explosion, and Shock Waves 43 (5):562–566CrossRefGoogle Scholar
  20. 20.
    Rezchikova K, Churakov A, Shlyapochnikov V, Tartakovsky V (1999) A quantum-chemical study of 1, 2, 3, 4, 5, 6, 7, 8-octaazanaphthalene and its N-oxides. Russ Chem Bull 48(5):870–872CrossRefGoogle Scholar
  21. 21.
    Upadhyay MK, Sengupta SK, Singh HJ (2015) Nitro and dinitroamino N-oxides of octaazaanthracene as high energy materials. J Mol Model 21(1):18CrossRefGoogle Scholar
  22. 22.
    Wei T, Zhu W, Zhang J, Xiao H (2010) DFT study on energetic tetrazolo-[1, 5-b]-1, 2, 4, 5-tetrazine and 1, 2, 4-triazolo-[4, 3-b]-1, 2, 4, 5-tetrazine derivatives. J Hazard Mater 179(1–3):581–590CrossRefGoogle Scholar
  23. 23.
    Yang J (2015) Theoretical studies on the structures, densities, detonation properties and thermal stability of tris (triazolo) benzene and its derivatives. Polycycl Aromat Compd 35(5):387–400CrossRefGoogle Scholar
  24. 24.
    Liu Z, Wu Q, Zhu W, Xiao H (2013) Theoretical study of energetic trinitromethyl-substituted tetrazole and tetrazine derivatives. J Phys Org Chem 26(11):939–947CrossRefGoogle Scholar
  25. 25.
    Wu Q, Pan Y, Xia X, Shao Y, Zhu W, Xiao H (2013) Theoretic design of 1, 2, 3, 4-tetrazine-1, 3-dioxide-based high-energy density compounds with oxygen balance close to zero. Struct Chem 24(5):1579–1590CrossRefGoogle Scholar
  26. 26.
    Ghule VD, Srinivas D, Sarangapani R, Jadhav PM, Tewari SP (2012) Molecular design of aminopolynitroazole-based high-energy materials. J Mol Model 18(7):3013–3020CrossRefGoogle Scholar
  27. 27.
    Wu Q, Zhu W, Xiao H (2014) A new design strategy for high-energy low-sensitivity explosives: combining oxygen balance equal to zero, a combination of nitro and amino groups, and N-oxide in one molecule of 1-amino-5-nitrotetrazole-3 N-oxide. J Mater Chem A 2(32):13006–13015CrossRefGoogle Scholar
  28. 28.
    Wu Q, Zhu W, Xiao H (2014) Computer-aided design of two novel and super-high energy cage explosives: dodecanitrohexaprismane and hexanitrohexaazaprismane. RSC Adv 4(8):3789–3797CrossRefGoogle Scholar
  29. 29.
    Miller MS, Rice BM, Kotlar AJ, Cramer RJ (2000) A new approach to propellant formulation: minimizing life-cycle costs through science-based design. Clean Products and Processes 2(1):37–46CrossRefGoogle Scholar
  30. 30.
    Muthurajan H, Sivabalan R, Talawar M, Anniyappan M, Venugopalan S (2006) Prediction of heat of formation and related parameters of high energy materials. J Hazard Mater 133(1–3):30–45CrossRefGoogle Scholar
  31. 31.
    Rozhkov VY, Batog L, Struchkova M (2011) Synthesis of 3-nitramino-4-(1H-1, 2, 3-triazol-1-yl)-1, 2, 5-oxadiazoles and their salts. Russ Chem Bull 60(8):1712–1718CrossRefGoogle Scholar
  32. 32.
    Wei T, Zhu W, Zhang X, Li Y-F, Xiao H (2009) Molecular design of 1, 2, 4, 5-tetrazine-based high-energy density materials. J Phys Chem A 113(33):9404–9412CrossRefGoogle Scholar
  33. 33.
    Fan XW, Ju XH (2008) Theoretical studies on four-membered ring compounds with NF2, ONO2, N3, and NO2 groups. J Comput Chem 29(4):505–513CrossRefGoogle Scholar
  34. 34.
    Chen Z, Xiao J, Xiao H, Chiu Y (1999) Studies on heats of formation for tetrazole derivatives with density functional theory B3LYP method. J Phys Chem A 103(40):8062–8066CrossRefGoogle Scholar
  35. 35.
    Ju X-H, Li Y-M, Xiao H-M (2005) Theoretical studies on the heats of formation and the interactions among the difluoroamino groups in polydifluoroaminocubanes. J Phys Chem A 109(5):934–938CrossRefGoogle Scholar
  36. 36.
    Xu X-J, Xiao H-M, Ju X-H, Gong X-D, Zhu W-H (2006) Computational studies on polynitrohexaazaadmantanes as potential high energy density materials. J Phys Chem A 110(17):5929–5933CrossRefGoogle Scholar
  37. 37.
    Curtiss LA, Raghavachari K, Trucks GW, Pople JA (1991) Gaussian-2 theory for molecular energies of first-and second-row compounds. J Chem Phys 94(11):7221–7230CrossRefGoogle Scholar
  38. 38.
    Ochterski JW, Petersson GA, Montgomery Jr JA (1996) A complete basis set model chemistry. V. Extensions to six or more heavy atoms. J Chem Phys 104(7):2598–2619CrossRefGoogle Scholar
  39. 39.
    Curtiss LA, Raghavachari K, Redfern PC, Pople JA (1997) Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation. J Chem Phys 106(3):1063–1079CrossRefGoogle Scholar
  40. 40.
    Jursic B (2000) Computing the heat of formation for cubane and tetrahedrane with density functional theory and complete basis set ab initio methods. J Mol Struct THEOCHEM 499(1–3):137–140CrossRefGoogle Scholar
  41. 41.
    Jursic BS (1998) Computing heats of formation from CBS-Q total energies and the experimental heats of vaporization of graphite and rhombic sulfur. J Mol Struct THEOCHEM 429:161–164CrossRefGoogle Scholar
  42. 42.
    Politzer P, Murray JS, Edward Grice M, Desalvo M, Miller E (1997) Calculation of heats of sublimation and solid phase heats of formation. Mol Phys 91(5):923–928CrossRefGoogle Scholar
  43. 43.
    Byrd EF, Rice BM (2006) Improved prediction of heats of formation of energetic materials using quantum mechanical calculations. J Phys Chem A 110(3):1005–1013CrossRefGoogle Scholar
  44. 44.
    Kamlet MJ, Jacobs S (1968) Chemistry of detonations. I. A simple method for calculating detonation properties of C–H–N–O explosives. J Chem Phys 48(1):23–35CrossRefGoogle Scholar
  45. 45.
    Politzer P, Martinez J, Murray JS, Concha MC, Toro-Labbe A (2009) An electrostatic interaction correction for improved crystal density prediction. Mol Phys 107(19):2095–2101CrossRefGoogle Scholar
  46. 46.
    Pospíšil M, Vávra P, Concha MC, Murray JS, Politzer P (2011) Sensitivity and the available free space per molecule in the unit cell. J Mol Model 17(10):2569–2574CrossRefGoogle Scholar
  47. 47.
    Politzer P, Murray JS (2014) Impact sensitivity and crystal lattice compressibility/free space. J Mol Model 20(5):2223CrossRefGoogle Scholar
  48. 48.
    Pospíšil M, Vávra P, Concha MC, Murray JS, Politzer P (2010) A possible crystal volume factor in the impact sensitivities of some energetic compounds. J Mol Model 16(5):895–901CrossRefGoogle Scholar
  49. 49.
    Boudart M (1977) Thermochemical kinetics, Sidney W. Benson, Wiley Interscience, 320 pp., $22.50, New York, 1976. AICHE J 23(4):613–613CrossRefGoogle Scholar
  50. 50.
    Dechant J (1988) Quantities, units and symbols in physical chemistry. Compiled for the Commission on Physicochemical Symbols, Terminology, and Units, Physical Chemistry Division, International Union of Pure and Applied Chemistry, by I. MILLS, T. CVITAŠ, K. HOMANN, N. KALLAY and K. KUCHITSU. ISBN 0-632-01773-2. Oxford: Blackwell Scientific Publications 1988. IX, 134 pp., cloth,£ 19.95. Acta Polymerica 39(10):598–598Google Scholar
  51. 51.
    Blanksby SJ, Ellison GB (2003) Bond dissociation energies of organic molecules. Acc Chem Res 36(4):255–263CrossRefGoogle Scholar
  52. 52.
    Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G (2009) Gaussian 09 package. Pittsburgh PA: Gaussian IncGoogle Scholar
  53. 53.
    Curtiss LA, Raghavachari K, Redfern PC, Stefanov BB (1998) Assessment of complete basis set methods for calculation of enthalpies of formation. J Chem Phys 108(2):692–697CrossRefGoogle Scholar
  54. 54.
    Zhang X, Zhu W, Xiao H (2010) Theoretical studies on heats of formation, detonation properties, and bond dissociation energies of monofurazan derivatives. Int J Quantum Chem 110(8):1549–1558Google Scholar
  55. 55.
    Huynh MHV, Hiskey MA, Chavez DE, Naud DL, Gilardi RD (2005) Synthesis, characterization, and energetic properties of diazido heteroaromatic high-nitrogen C− N compound. J Am Chem Soc 127(36):12537–12543CrossRefGoogle Scholar
  56. 56.
    Gálvez-Ruiz JC, Holl G, Karaghiosoff K, Klapötke TM, Löhnwitz K, Mayer P, Nöth H, Polborn K, Rohbogner CJ, Suter M (2005) Derivatives of 1, 5-diamino-1 H-tetrazole: a new family of energetic heterocyclic-based salts. Inorg Chem 44(12):4237–4253CrossRefGoogle Scholar
  57. 57.
    Smith MW, Cliff MD (1999) NTO-based explosive formulations: a technology review. DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION CANBERRA (AUSTRALIA),Google Scholar
  58. 58.
    Türker L, Atalar T, Gümüş S, Çamur Y (2009) A DFT study on nitrotriazines. J Hazard Mater 167(1–3):440–448CrossRefGoogle Scholar
  59. 59.
    Politzer P, Murray JS (2015) Impact sensitivity and the maximum heat of detonation. J Mol Model 21(10):262CrossRefGoogle Scholar
  60. 60.
    Politzer P, Murray JS (2016) High performance, low sensitivity: conflicting or compatible? Propellants, Explosives, Pyrotechnics 41(3):414–425CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute for Computation in Molecular and Materials Science, Department of ChemistryNanjing University of Science and TechnologyNanjingChina

Personalised recommendations