Advertisement

Journal of Molecular Modeling

, 25:294 | Cite as

UV-vis absorption spectra of Sn(IV)tetrakis(4-pyridyl) porphyrins on the basis of axial ligation and pyridine protonation

  • Pavithra Jayachandran
  • Abiram Angamuthu
  • Praveena GopalanEmail author
Original Paper
  • 41 Downloads

Abstract

The present study highlights the structural and electronic spectra of Sn(IV)tetrakis(4-pyridyl) porphyrins (SnTP) using density functional theory (DFT) and time-dependent density functional theory (TDDFT). The impact of axial ligands (OH, Cl, and H2O) and protonation at pyridine sites on the excitation properties of SnTP is also explored. The considered SnTPs were optimized at B3LYP/6-31+G* level of theory with LANL2DZ basis set for Sn metal. The effects of tetrahydrofuran (THF) and dimethylformamide (DMF) solvents were also assessed employing conductor-like polarizable continuum (C-PCM) model. The observed structural effects correlate well with the experimental data and clearly depict the impact of axial ligands on the SnTP ring. The absorption spectra along with the frontier orbitals in all three phases show noticeable dependence of axial ligation on the photophysical properties of SnTPs. The transition character of molecular orbitals and their respective density of states (DOS) were explored to infer the orbitals involved in electronic transitions.

Graphical abstract

The structural and electronic spectra of Sn(IV)tetrakis(4-pyridyl) porphyrins (SnTP) were examined using time-dependent density functional theory (TDDFT). Axial ligation and pyridine protonation significantly affects the absorption properties of Sn complexes. The overall results suggest the application of [(OH)Sn (OH)TP] and [(Cl)Sn (Cl)TP] as photosensitizers.

Keywords

Porphyrin Sn Axial ligands Pyridine protonation Absorption TDDFT 

Notes

Acknowledgments

The authors are thankful to “Bioinformatics Resources and Applications Facility (BRAF), C-DAC, Pune for offering the computational facilities to carry out this work. The authors are also thankful to Prof. L. Senthilkumar, Department of Physics, Bharathiar University, Tamilnadu, INDIA for extending his timely help in providing the computational facility to obtain the relaxed geometries of excited states. PG is grateful to the Science and Engineering Research Board (SERB), India.

Funding information

This work received FastTrack Research Grant (Project No. SB/FTP/PS-096/2013) from the Science and Engineering Research Board (SERB), India.

Supplementary material

894_2019_4166_MOESM1_ESM.docx (1 mb)
ESM 1 (DOCX 1039 kb)

References

  1. 1.
    Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod BFE, Ashari-Astani N, Tavernelli I, Rothlisberger U, Nazeeruddin MK, Grätzel M (2014) Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Commun 6:242Google Scholar
  2. 2.
    Chen B, Sun L, Xie Y-S (2015) Modulation of photovoltaic behavior of dye-sensitized solar cells by electron donors of porphyrin dyes and cosensitization. Chin Chem Lett 26:899–904CrossRefGoogle Scholar
  3. 3.
    Narra VK, Ullah H, Singh VK, Giribabu L, Senthilarasu S, Karazhanov SZ, Tahir AA, Mallick TK, Upadhyaya HM (2015) D–π–A system based on zinc porphyrin dyes for dye-sensitized solar cells: combined experimental and DFT–TDDFT study. Polyhedron 100:313–320CrossRefGoogle Scholar
  4. 4.
    Endo A, Ogasawara M, Takahashi A, Yokoyama D, Kato Y, Adachi C (2009) Thermally activated delayed fluorescence from Sn4+–porphyrin complexes and their application to organic light emitting diodes — a novel mechanism for electroluminescence. Adv Mater 21:4802–4806CrossRefGoogle Scholar
  5. 5.
    Scanone AC, Gsponer NS, Alvarez MG, Durantini EN (2018) Porphyrins containing basic aliphatic amino groups as potential broad-spectrum antimicrobial agents. Photodiagn Photodyn Ther 24:220–227CrossRefGoogle Scholar
  6. 6.
    Song H, Liu Q, Xie Y (2018) Porphyrin-sensitized solar cells: systematic molecular optimization, coadsorption and cosensitization. Chem Commun 54:1811–1824CrossRefGoogle Scholar
  7. 7.
    Li L-L, Diau EW-G (2013) Porphyrin-sensitized solar cells. Chem Soc Rev 42:291–304CrossRefGoogle Scholar
  8. 8.
    Higashino T, Imahori H (2015) Porphyrins as excellent dyes for dye-sensitized solar cells: recent developments and insights. Dalton Trans 44:448–463CrossRefGoogle Scholar
  9. 9.
    Birel Ö, Nadeem S, Duman H (2017) Porphyrin-based dye-sensitized solar cells (DSSCs): a review. J Fluoresc 27:1075–1085CrossRefGoogle Scholar
  10. 10.
    Rochford J, Chu D, Hagfeldt A, Galoppini E (2007) Tetrachelate porphyrin chromophores for metal oxide semiconductor sensitization: effect of the spacer length and anchoring group position. J Am Chem Soc 129:4655–4665CrossRefGoogle Scholar
  11. 11.
    Stromberg JR, Marton A, Kee HL, Kirmaier C, Diers JR, Muthiah C, Taniguchi M, Lindsey JS, Bocian DF, Meyer GJ, Holten D (2007) Examination of tethered porphyrin, chlorin, and bacteriochlorin molecules in mesoporous metal-oxide solar cells. J Phys Chem C 111:15464–15478CrossRefGoogle Scholar
  12. 12.
    Wu S-L, Lu H-P, Yu H-T, Chuang S-H, Chiu C-L, Lee C-W, Diau EW-G, Yeh C-Y (2010) Design and characterization of porphyrin sensitizers with a push-pull framework for highly efficient dye-sensitized solar cells. Energy Environ Sci 3:949–955CrossRefGoogle Scholar
  13. 13.
    Kay A, Graetzel M (1993) Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins. J Phys Chem 97:6272–6277CrossRefGoogle Scholar
  14. 14.
    Campbell WM, Jolley KW, Wagner P, Wagner K, Walsh PJ, Gordon KC, Schmidt-Mende L, Nazeeruddin MK, Wang Q, Grätzel M, Officer DL (2007) Highly efficient porphyrin sensitizers for dye-sensitized solar cells. J Phys Chem C 111:11760–11762CrossRefGoogle Scholar
  15. 15.
    Shalabi AS, El Mahdy AM, Taha HO (2013) Screening of thiophene-substituted metalloporphyrins (Zn, Ni, Fe, Ti) for use in dye-sensitized solar cells DFT and TD-DFT study. J Nanopart Res 15:1696CrossRefGoogle Scholar
  16. 16.
    Arkan F, Izadyar M (2017) The investigation of the central metal effects on the porphyrin-based DSSCs performance; molecular approach. Mater Chem Phys 196:142–152CrossRefGoogle Scholar
  17. 17.
    Barbosa Neto NM, Correa DS, De Boni L, Parra GG, Misoguti L, Mendonça CR, Borissevitch IE, Zílio SC, Gonçalves PJ (2013) Excited states absorption spectra of porphyrins – solvent effects. Chem Phys Lett 587:118–123CrossRefGoogle Scholar
  18. 18.
    Santos SCD, Moreira LM, Novo DLR, Santin LRR, Bianchini D, Bonacin JA, Romani AP, Fernandes AU, Baptista MS, Oliveira HPM (2015) Photophysical properties of porphyrin derivatives: influence of the alkyl chains in homogeneous and micro-heterogeneous systems. J Porphyrins Phthalocyanines 19:920–933CrossRefGoogle Scholar
  19. 19.
    Soman R, Raghav D, Sujatha S, Rathinasamy K, Arunkumar C (2015) Axial ligand modified high valent tin (iv) porphyrins: synthesis, structure, photophysical studies and photodynamic antimicrobial activities on Candida albicans. RSC Adv 5:61103–61117CrossRefGoogle Scholar
  20. 20.
    Yokoyama A, Kojima T, Ohkubo K, Shiro M, Fukuzumi S (2011) Formation of a hybrid compound composed of a saddle-distorted tin (IV)−porphyrin and a Keggin-type heteropolyoxometalate to undergo intramolecular photoinduced electron transfer. J Phys Chem A 115:986–997CrossRefGoogle Scholar
  21. 21.
    Basu A, Kitamura M, Mori S, Ishida M, Xie Y, Furuta H (2015) Near-infrared luminescent Sn (IV) complexes of N-confused tetraphenylporphyrin: effect of axial anion coordination. J Porphyrins Phthalocyanines 19:361–371CrossRefGoogle Scholar
  22. 22.
    Agnihotri N, Steer RP (2015) DFT and TD-DFT calculations of axially substituted tin porphyrins and an ethynyl-linked tin porphyrin dimer. J Porphyrins Phthalocyanines 19:610–621CrossRefGoogle Scholar
  23. 23.
    Ju M-G, Liang W (2013) Computational insight on the working principles of zinc porphyrin dye-sensitized solar cells. J Phys Chem C 117:14899–14911CrossRefGoogle Scholar
  24. 24.
    Imahori H, Umeyama T, Ito S (2009) Large π-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells. Acc Chem Res 42:1809–1818CrossRefGoogle Scholar
  25. 25.
    Imran M, Ramzan M, Qureshi AK, Khan MA, Tariq M (2018) Emerging applications of porphyrins and metalloporphyrins in biomedicine and diagnostic magnetic resonance imaging. Biosensors 8Google Scholar
  26. 26.
    Mikroyannidis JA, Charalambidis G, Coutsolelos AG, Balraju P, Sharma GD (2011) Novel zinc porphyrin with phenylenevinylene meso-substituents: synthesis and application in dye-sensitized solar cells. J Power Sources 196:6622–6628CrossRefGoogle Scholar
  27. 27.
    Bhyrappa P, Sankar M (2018) Effect of solvent on the electronic absorption spectral properties of some mixed β-octasubstituted Zn (II)-tetraphenylporphyrins. Spectrochim Acta A Mol Biomol Spectrosc 189:80–85CrossRefGoogle Scholar
  28. 28.
    Bajjou O, Bakour A, Khenfouch M, Baitoul M, Mothudi B, Maaza M, Faulques E (2018) pH and concentration effect on the optical absorption properties of Sn(V) tetrakis (4-pirydyl) porphyrin functionalized graphene oxide. J Phys Conf Ser 984:012004CrossRefGoogle Scholar
  29. 29.
    Gao F, Yang C-L, Wang M-S, Ma X-G, Liu W-W (2018) Theoretical studies on the possible sensitizers of DSSC: nanocomposites of graphene quantum dot hybrid phthalocyanine/tetrabenzoporphyrin/tetrabenzotriazaporphyrins/cis-tetrabenzodiazaporphyrins/tetrabenzomonoazaporphyrins and their Cu-metallated macrocycles. Spectrochim Acta A Mol Biomol Spectrosc 195:176–183CrossRefGoogle Scholar
  30. 30.
    Mulya F, Santoso GA, Aziz HA, Pranowo HD (2016) Design a better metalloporphyrin semiconductor: a theoretical studies on the effect of substituents and central ions. AIP Conf Proc 1755:080006CrossRefGoogle Scholar
  31. 31.
    Lazarides T, Kuhri S, Charalambidis G, Panda MK, Guldi DM, Coutsolelos AG (2012) Electron vs energy transfer in arrays featuring two bodipy chromophores axially bound to a Sn (IV) porphyrin via a phenolate or benzoate bridge. Inorg Chem 51:4193–4204CrossRefGoogle Scholar
  32. 32.
    Koposova E, Liu X, Pendin A, Thiele B, Shumilova G, Ermolenko Y, Offenhäusser A, Mourzina Y (2016) Influence of meso-substitution of the porphyrin ring on enhanced hydrogen evolution in a photochemical system. J Phys Chem C 120:13873–13890CrossRefGoogle Scholar
  33. 33.
    Jiang J, Jin X, Li C, Gu Z (1995) A synthesis and structure of a water-soluble tetrapyridylporphyrinato tin (iv) chloride. J Coord Chem 35:313–318CrossRefGoogle Scholar
  34. 34.
    Wang Z, Medforth CJ, Shelnutt JA (2004) Porphyrin nanotubes by ionic self-assembly. J Am Chem Soc 126:15954–15955CrossRefGoogle Scholar
  35. 35.
    Jayachandran P, Angamuthu A, Gopalan P (2018) Quantum chemical study on the structure and energetics of binary ionic porphyrin complexes. J Chin Chem Soc 65:908–917CrossRefGoogle Scholar
  36. 36.
    Thomas A, Kuttassery F, Mathew S, Remello SN, Ohsaki Y, Yamamoto D, Nabetani Y, Tachibana H, Inoue H (2018) Protolytic behavior of axially coordinated hydroxy groups of tin (IV) porphyrins as promising molecular catalysts for water oxidation. J Photochem Photobiol A Chem 358:402–410CrossRefGoogle Scholar
  37. 37.
    Liao M-S, Kar T, Gorun SM, Scheiner S (2004) Effects of peripheral substituents and axial ligands on the electronic structure and properties of iron phthalocyanine. Inorg Chem 43:7151–7161CrossRefGoogle Scholar
  38. 38.
    Smith G, Arnold DP, Kennard CHL, Mak TCW (1991) Tin (IV) porphyrin complexes—IV. Crystal structures of meso-tetraphenylporphyrinatotin (IV) complexes with hydroxide, water, benzoate, salicylate and acetylsalicylate as axial ligands. Polyhedron 10:509–516CrossRefGoogle Scholar
  39. 39.
    Arnold DP, Blok J (2004) The coordination chemistry of tin porphyrin complexes. Coord Chem Rev 248:299–319CrossRefGoogle Scholar
  40. 40.
    Chaitanya K, Ju X-H, Heron BM (2014) Theoretical study on the light harvesting efficiency of zinc porphyrin sensitizers for DSSCs. RSC Adv 4:26621–26634CrossRefGoogle Scholar
  41. 41.
    Rani J, Raveendran A, Sushila CA, Panda MK, Patra R (2018) Polymorphism in Sn (IV)-tetrapyridyl porphyrins with a halogenated axial ligand: structural, photophysical, and morphological study. Cryst Growth Des 18:1437–1447CrossRefGoogle Scholar
  42. 42.
    Franco R, Jacobsen JL, Wang H, Wang Z, István K, Schore NE, Song Y, Medforth CJ, Shelnutt JA (2010) Molecular organization in self-assembled binary porphyrin nanotubes revealed by resonance Raman spectroscopy. PCCP 12:4072–4077CrossRefGoogle Scholar
  43. 43.
    Andrienko GA, Romanov (2011). http://www.chemcraftprog.com/
  44. 44.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  45. 45.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRefGoogle Scholar
  46. 46.
    Nachimuthu S, Lai K-H, Taufany F, Jiang J-C (2014) Theoretical study on molecular design and optical properties of organic sensitizers. PCCP 16:15389–15399CrossRefGoogle Scholar
  47. 47.
    Mendizabal F, Mera-Adasme R, Xu W-H, Sundholm D (2017) Electronic and optical properties of metalloporphyrins of zinc on TiO2 cluster in dye-sensitized solar-cells (DSSC). A quantum chemistry study. RSC Adv 7:42677–42684CrossRefGoogle Scholar
  48. 48.
    Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270–283CrossRefGoogle Scholar
  49. 49.
    Santhanamoorthi N, Lo C-M, Jiang J-C (2013) Molecular design of porphyrins for dye-sensitized solar cells: a DFT/TDDFT study. J Phys Chem Lett 4:524–530CrossRefGoogle Scholar
  50. 50.
    Koseki J, Maezono R, Tachikawa M, Towler MD, Needs RJ (2008) Quantum Monte Carlo study of porphyrin transition metal complexes. J Chem Phys 129:085103CrossRefGoogle Scholar
  51. 51.
    Szafran M, Karelson MM, Katritzky AR, Koput J, Zerner MC (1993) Reconsideration of solvent effects calculated by semiempirical quantum chemical methods. J Comput Chem 14:371–377CrossRefGoogle Scholar
  52. 52.
    Miertuš S, Scrocco E, Tomasi J (1981) Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. Chem Phys 55:117–129CrossRefGoogle Scholar
  53. 53.
    Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24:669–681CrossRefGoogle Scholar
  54. 54.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A. 1. Gaussian, Inc., Wallingford CTGoogle Scholar
  55. 55.
    O’Boyle NM, Tenderholt AL, Langner KM (2008) cclib: a library for package-independent computational chemistry algorithms. J Comp Chem 29:839–845CrossRefGoogle Scholar
  56. 56.
    Dennington R, Keith T, Millam J (2005) GaussView version 5. Semichem Inc., Shawnee MissionGoogle Scholar
  57. 57.
    Cao Z, Chen Q, Lu Y, Liu H, Hu Y (2013) Density functional theory study on the interaction between metalloporphyrins and NH3. Int. J. Quantum Chem 113:1137–1146CrossRefGoogle Scholar
  58. 58.
    Collins DM, Scheidt WR, Hoard JL (1972) Crystal structure and molecular stereochemistry of .alpha.,.beta.,.gamma.,.delta.-tetraphenylporphinatodichlorotin (IV). J Am Chem Soc 94:6689–6696CrossRefGoogle Scholar
  59. 59.
    Kasha M, Rawls HR, El-Bayoumi MA The exciton model in molecular spectroscopy. Pure Appl Chem 11:371–392CrossRefGoogle Scholar
  60. 60.
    Bialas D, Zitzler-Kunkel A, Kirchner E, Schmidt D, Würthner F (2016) Structural and quantum chemical analysis of exciton coupling in homo- and heteroaggregate stacks of merocyanines. Nat Commun 7:12949CrossRefGoogle Scholar
  61. 61.
    Kawabata K, Okabe S, Taniguchi S (1972) Shoulder of optical absorption spectrum of the trapped electron in gamma-irradiated crystalline ice. J Chem Phys 57:2855–2856CrossRefGoogle Scholar
  62. 62.
    Gera B, Manna AK, Chandra Mondal P (2017) Metal-ions linked surface-confined molecular dyads of Zn-porphyrin–metallo-terpyridine: an experimental and theoretical study. RSC Adv 7:1290–1298CrossRefGoogle Scholar
  63. 63.
    Maximiano RV, Piovesan E, Zílio SC, Machado AEH, de Paula R, Cavaleiro JAS, Borissevitch IE, Ito AS, Gonçalves PJ, Barbosa Neto NM (2010) Excited-state absorption investigation of a cationic porphyrin derivative. J Photochem Photobiol A Chem 214:115–120CrossRefGoogle Scholar
  64. 64.
    Gonçalves PJ, Borissevitch IE, Zílio SC (2009) Effect of protonation on the singlet–singlet excited-state absorption of meso-tetrakis(p-sulphonatophenyl) porphyrin. Chem Phys Lett 469:270–273CrossRefGoogle Scholar
  65. 65.
    Gonçalves PJ, Corrêa DS, Franzen PL, De Boni L, Almeida LM, Mendonça CR, Borissevitch IE, Zílio SC (2013) Effect of interaction with micelles on the excited-state optical properties of zinc porphyrins and J-aggregates formation. Spectrochim Acta A Mol Biomol Spectrosc 112:309–317CrossRefGoogle Scholar
  66. 66.
    Boni LD, Correa DS, Pavinatto Jr FJ, dos Santos DS, Mendonça CR (2007) Excited state absorption spectrum of chlorophyll a obtained with white-light continuum. J Chem Phys 126:165102CrossRefGoogle Scholar
  67. 67.
    Tran TTH, Chen G-L, Hoang TKA, Kuo M-Y, Su YO (2017) Effect of imidazole on the electrochemistry of zinc porphyrins: an electrochemical and computational study. J Phys Chem A 121:6925–6931CrossRefGoogle Scholar
  68. 68.
    Sang-aroon W, Saekow S, Amornkitbamrung V (2012) Density functional theory study on the electronic structure of Monascus dyes as photosensitizer for dye-sensitized solar cells. J Photochem Photobiol A Chem 236:35–40CrossRefGoogle Scholar
  69. 69.
    Francés-Monerris A, Magra K, Darari M, Cebrián C, Beley M, Domenichini E, Haacke S, Pastore M, Assfeld X, Gros PC, Monari A (2018) Synthesis and computational study of a pyridylcarbene Fe (II) complex: unexpected effects of fac/mer isomerism in metal-to-ligand triplet potential energy surfaces. Inorg Chem 57:10431–10441CrossRefGoogle Scholar
  70. 70.
    Sousa C, Alías M, Domingo A, de Graaf C (2019) Deactivation of excited states in transition-metal complexes: insight from computational chemistry. Chem Eur J 25:1152–1164CrossRefGoogle Scholar
  71. 71.
    Zhang W, Kjær KS, Alonso-Mori R, Bergmann U, Chollet M, Fredin LA, Hadt RG, Hartsock RW, Harlang T, Kroll T, Kubiček K, Lemke HT, Liang HW, Liu Y, Nielsen MM, Persson P, Robinson JS, Solomon EI, Sun Z, Sokaras D, van Driel TB, Weng T-C, Zhu D, Wärnmark K, Sundström V, Gaffney KJ (2017) Manipulating charge transfer excited state relaxation and spin crossover in iron coordination complexes with ligand substitution. Chem Sci 8:515–523CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsPSGR Krishnammal College for WomenCoimbatoreIndia
  2. 2.Department of PhysicsKarunya Institute of Technology and SciencesCoimbatoreIndia

Personalised recommendations