Advertisement

Journal of Molecular Modeling

, 25:277 | Cite as

The structural basis for membrane assembly of immunoreceptor signalling complexes

  • Namita Dube
  • Jan K. Marzinek
  • Robert C. Glen
  • Peter J. BondEmail author
Original Paper
Part of the following topical collections:
  1. Tim Clark 70th Birthday Festschrift

Abstract

Immunoreceptors are TM complexes that consist of separate ligand-binding and signal-transducing modules. Mounting evidence suggests that interactions with the local environment may influence the architecture of these TM domains, which assemble via crucial sets of conserved ionisable residues, and also control the peripheral association of immunoreceptor tyrosine-based activation motifs (ITAMs) whose phosphorylation triggers cytoplasmic signalling cascades. We now report a molecular dynamics (MD) simulation study of the archetypal T cell receptor (TCR) and its cluster of differentiation 3 (CD3) signalling partners, along with the analogous DNAX-activation protein of 12 kDa (DAP12)/natural killer group 2C (NKG2C) complex. Based on > 15 μs of explicitly solvated, atomic-resolution sampling, we explore molecular aspects of immunoreceptor complex stability in different functionally relevant states. A novel alchemical approach is used to simulate the cytoplasmic CD3ε tail at different depths within lipid bilayer models, revealing that the conformation and cytoplasmic exposure of ITAMs are highly sensitive to local enrichment by different lipid species and to phosphorylation. Furthermore, simulations of the TCR and DAP12 TM domains in various states of oligomerisation suggest that, during the early stages of assembly, stable membrane insertion is facilitated by the interfacial lipid/solvent environment and/or partial ionisation of charged residues. Collectively, our results indicate that the architecture and mechanisms of signal transduction in immunoreceptor complexes are tightly regulated by interactions with the microenvironment.

Keywords

Molecular dynamics (MD) simulation T cell receptor (TCR) Transmembrane domain Lipid bilayer ITAM motif 

Notes

Acknowledgements

We acknowledge access to the Darwin supercomputer of the University of Cambridge, and the HECToR UK supercomputer service for computational resources awarded by CCP-BioSim. ND thanks Maite Ortiz-Suarez and Mark Williamson for assistance during simulation analysis.

Funding information

This work received financial support from the Nehru Trust of the University of Cambridge and Rajiv Gandhi (UK) foundation. PJB and JKM acknowledge funding from the National Research Foundation (NRF2017NRF-CRP001-027).

Supplementary material

894_2019_4165_MOESM1_ESM.docx (3 mb)
ESM 1 (DOCX 3083 kb)

References

  1. 1.
    Aivazian DA, Stern LJ (2000) Phosphorylation of T cell receptor zeta is regulated by a lipid dependent folding transition. Nat Struct Biol 7:1023–1026CrossRefGoogle Scholar
  2. 2.
    Berk H, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447CrossRefGoogle Scholar
  3. 3.
    Bezbradica JS, Medzhitov R (2012) Role of ITAM signaling module in signal integration. Curr Opin Immunol 24:58–66CrossRefGoogle Scholar
  4. 4.
    Bjelkmar P, Larsson P, Cuendet MA, Hess B, Lindahl E (2010) Implementation of the CHARMM force field in GROMACS: analysis of protein stability effects from correction maps, virtual interaction sites, and water models. J Chem Theory Comput 6:459–466CrossRefGoogle Scholar
  5. 5.
    Bond PJ, Faraldo-Gómez JD (2011) Molecular mechanism of selective recruitment of Syk kinases by the membrane antigen-receptor complex. J Biol Chem 286:25872–25881CrossRefGoogle Scholar
  6. 6.
    Bonifacino JS, Cosson P, Shah N, Klausner RD (1991) Role of potentially charged transmembrane residues in targeting proteins for retention and degradation within the endoplasmic reticulum. EMBO J 10:2783–2793CrossRefGoogle Scholar
  7. 7.
    Brazin KN et al (2018) The T cell antigen receptor α transmembrane domain coordinates triggering through regulation of bilayer immersion and CD3 subunit associations. Immunity. 49:829–841CrossRefGoogle Scholar
  8. 8.
    Brooks BR et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614CrossRefGoogle Scholar
  9. 9.
    Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101CrossRefGoogle Scholar
  10. 10.
    Call ME, Pyrdol J, Wiedmann M, Wucherpfennig KW (2002) The organizing principle in the formation of the T cell receptor-CD3 complex. Cell 111:967–979CrossRefGoogle Scholar
  11. 11.
    Call ME, Wucherpfennig KW (2004) Molecular mechanisms for the assembly of the T cell receptor–CD3 complex. Mol Immunol 40:1295–1305CrossRefGoogle Scholar
  12. 12.
    Call ME, Wucherpfennig KW (2005) The T cell receptor: critical role of the membrane environment in receptor assembly and function. Annu Rev Immunol 23:101–125CrossRefGoogle Scholar
  13. 13.
    Call ME et al (2006) The structure of the zeta-zeta transmembrane dimer reveals features essential for its assembly with the T cell receptor. Cell 127:355–368CrossRefGoogle Scholar
  14. 14.
    Call ME, Wucherpfennig KW, Chou JJ (2010) The structural basis for intramembrane assembly of an activating immunoreceptor complex. Nat Immunol 11:1023–1029CrossRefGoogle Scholar
  15. 15.
    Chen VB et al (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66:12–21CrossRefGoogle Scholar
  16. 16.
    Cheng X, Im W (2012) NMR observable-based structure refinement of DAP12-NKG2C activating immunoreceptor complex in explicit membranes. Biophys J 102:L27–L29CrossRefGoogle Scholar
  17. 17.
    Deford-Watts LM et al (2009) The cytoplasmic tail of the T cell receptor CD3 epsilon subunit contains a phospholipid-binding motif that regulates T cell functions. J Immunol 183:1055–1064CrossRefGoogle Scholar
  18. 18.
    DeFord-Watts LM et al (2011) The CD3 ζ subunit contains a phosphoinositide-binding motif that is required for the stable accumulation of TCR-CD3 complex at the immunological synapse. J Immunol 186:6839–6847CrossRefGoogle Scholar
  19. 19.
    de Jong DH, Periole X, Marrink SJ (2012) Dimerization of amino acid side chains: lessons from the comparison of different force fields. J Chem Theory Comput 8:1003–1014CrossRefGoogle Scholar
  20. 20.
    Devaux PF (1991) Static and dynamic lipid asymmetry in cell membranes. Biochemistry 30:1163–1173CrossRefGoogle Scholar
  21. 21.
    Duchardt ED, Sigalov ABD, Aivazian DD, Stern LJPD, Schwalbe HPD (2007) Structure induction of the T-cell receptor ζ-chain upon lipid binding investigated by NMR spectroscopy. ChemBioChem 8:820–827CrossRefGoogle Scholar
  22. 22.
    Essmann U et al (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593CrossRefGoogle Scholar
  23. 23.
    Feng J, Garrity D, Call ME, Moffett H, Wucherpfennig KW (2005) Convergence on a distinctive assembly mechanism by unrelated families of activating immune receptors. Immunity 22:427–438CrossRefGoogle Scholar
  24. 24.
    Gagnon E, Schubert DA, Gordo S, Chu HH, Wucherpfennig KW (2012) Local changes in lipid environment of TCR microclusters regulate membrane binding by the CD3epsilon cytoplasmic domain. J Exp Med 209:2423–2439CrossRefGoogle Scholar
  25. 25.
    Garrity D, Call ME, Feng J, Wucherpfennig KW (2005) The activating NKG2D receptor assembles in the membrane with two signaling dimers into a hexameric structure. Proc Natl Acad Sci U S A 102:7641–7646CrossRefGoogle Scholar
  26. 26.
    Gil D, Schamel WW, Montoya M, Sánchez-Madrid F, Alarcón B (2002) Recruitment of Nck by CD3 epsilon reveals a ligand-induced conformational change essential for T cell receptor signaling and synapse formation. Cell 109:901–912CrossRefGoogle Scholar
  27. 27.
    Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472CrossRefGoogle Scholar
  28. 28.
    Hofmann K, Stoffel W (1993) TMbase—a database of membrane spanning proteins segments. Biol Chem 374:166Google Scholar
  29. 29.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38CrossRefGoogle Scholar
  30. 30.
    Jo S, Lim JB, Klauda JB, Im W (2009) CHARMM-GUI membrane builder for mixed bilayers and its application to yeast membranes. Biophys J 97:50–58CrossRefGoogle Scholar
  31. 31.
    Jones DT, Taylor WR, Thornton JM (1994) A model recognition approach to the prediction of all-helical membrane protein structure and topology. Biochemistry 33:3038–3049CrossRefGoogle Scholar
  32. 32.
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935CrossRefGoogle Scholar
  33. 33.
    Jusoh SA, Helms V (2011) Helical integrity and microsolvation of transmembrane domains from Flaviviridae envelope glycoproteins. Biochim Biophys Acta 1808:1040–1049CrossRefGoogle Scholar
  34. 34.
    Klauda JB, Venable RM, Freites JA, O’Connor JW, Tobias DJ, Mondragon-Ramirez C, Vorobyov I, MacKerell AD, Pastor RW (2010) Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B 114:7830–7843CrossRefGoogle Scholar
  35. 35.
    Knoblich K et al (2015) Transmembrane complexes of DAP12 crystallized in lipid membranes provide insights into control of oligomerization in immunoreceptor assembly. Cell Rep 11:1184–1192CrossRefGoogle Scholar
  36. 36.
    Krshnan L, Park S, Im W, Call MJ, Call ME (2016) A conserved αβ transmembrane interface forms the core of a compact T-cell receptor-CD3 structure within the membrane. Proc Natl Acad Sci U S A 113:E6649–E6658CrossRefGoogle Scholar
  37. 37.
    Kurowski MA, Bujnicki JM (2003) GeneSilico protein structure prediction meta-server. Nucleic Acids Res 31:3305–3307CrossRefGoogle Scholar
  38. 38.
    Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8:477–486CrossRefGoogle Scholar
  39. 39.
    Lee MS et al (2015) A mechanical switch couples T cell receptor triggering to the cytoplasmic juxtamembrane regions of CD3ζζ. Immunity 43:227–239CrossRefGoogle Scholar
  40. 40.
    Lopez CA, Sethi A, Goldstein B, Wilson BS, Gnanakaran S (2015) Membrane-mediated regulation of the intrinsically disordered CD3ϵ cytoplasmic tail of the TCR. Biophys J 108:2481–2491CrossRefGoogle Scholar
  41. 41.
    Love PE, Hayes SM (2010) ITAM-mediated signaling by the T-cell antigen receptor. Cold Spring Harb Perspect Biol 2:a002485CrossRefGoogle Scholar
  42. 42.
    MacCallum JL, Bennett WF, Tieleman DP (2007) Partitioning of amino acid side chains into lipid bilayers: results from computer simulations and comparison to experiment. J Gen Physiol 129:371–377CrossRefGoogle Scholar
  43. 43.
    Manolios N, Letourneur F, Bonifacino JS, Klausner RD (1991) Pairwise, cooperative and inhibitory interactions describe the assembly and probable structure of the T-cell antigen receptor. EMBO J 10:1643–1651CrossRefGoogle Scholar
  44. 44.
    Park S, Krshnan L, Call MJ, Call ME, Im W (2018) Structural conservation and effects of alterations in T cell receptor transmembrane interfaces. Biophys J 114:1030–1035CrossRefGoogle Scholar
  45. 45.
    Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190CrossRefGoogle Scholar
  46. 46.
    Petruk AA et al (2013) The structure of the CD3 ζζ transmembrane dimer in POPC and raft-like lipid bilayer. Biochim Biophys Acta 1828:2637–2645CrossRefGoogle Scholar
  47. 47.
    Sali A, Blundell TL (1993) Comparative protein modeling by satisfaction of spatial restraints. J Mol Biol 234:779–815CrossRefGoogle Scholar
  48. 48.
    Senes A, Engel DE, DeGrado WF (2004) Folding of helical membrane proteins: the role of polar, GxxxG-like and proline motifs. Curr Opin Struct Biol 14:465–479CrossRefGoogle Scholar
  49. 49.
    Sharma S, Juffer AH (2013) An atomistic model for assembly of transmembrane domain of T cell receptor complex. J Am Chem Soc 135:2188–2197CrossRefGoogle Scholar
  50. 50.
    Sharma S, Lensink MF, Juffer AH (2014) The structure of the CD3ζζ transmembrane dimer in lipid bilayers. Biochim Biophys Acta 1838:739–746CrossRefGoogle Scholar
  51. 51.
    Sigalov AB, Aivazian DA, Uversky VN, Stern LJ (2006) Lipid-binding activity of intrinsically unstructured cytoplasmic domains of multichain immune recognition receptor signaling subunits. Biochemistry 45:15731–15739CrossRefGoogle Scholar
  52. 52.
    Sigalov AB, Hendricks GM (2009) Membrane binding mode of intrinsically disordered cytoplasmic domains of T cell receptor signaling subunits depends on lipid composition. Biochem Biophys Res Commun 389:388–393CrossRefGoogle Scholar
  53. 53.
    Sonnhammer EL, von Heijne G, Krogh A (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Molec Biol 6:175–182Google Scholar
  54. 54.
    Sun H, Chu H, Fu T, Shen H, Li G (2013) Theoretical elucidation of the origin for assembly of the DAP12 dimer with only one NKG2C in the lipid membrane. J Phys Chem B 117:4789–4797CrossRefGoogle Scholar
  55. 55.
    Wei P, Zheng BK, Guo PR, Kawakami T, Luo SZ (2013) The association of polar residues in the DAP12 homodimer: TOXCAT and molecular dynamics simulation studies. Biophys J 104:1435–1444CrossRefGoogle Scholar
  56. 56.
    Wei P, Xu L, Li CD, Sun FD, Chen L, Tan T, Luo SZ (2014) Molecular dynamic simulation of the self-assembly of DAP12-NKG2C activating immunoreceptor complex. PLoS One 9:e105560CrossRefGoogle Scholar
  57. 57.
    Wolf MG, Hoefling M, Aponte-Santamaría C (2010) Grubmüller, H. & Groenhof, G. g _ membed: efficient insertion of a membrane protein into an equilibrated lipid bilayer with minimal perturbation. J Comput Chem 31:2169–2174CrossRefGoogle Scholar
  58. 58.
    Wu W et al (2015) Lipid in T-cell receptor transmembrane signaling. Prog Biophys Mol Biol 118:130–138CrossRefGoogle Scholar
  59. 59.
    Wucherpfennig KW, Gagnon E, Call MJ, Huseby ES, Call ME (2009) Structural biology of the T-cell receptor: insights into receptor assembly, ligand recognition, and initiation of signaling. Cold Spring Harb Perspect Biol 2:a005140Google Scholar
  60. 60.
    Yang W et al (2017) Dynamic regulation of CD28 conformation and signaling by charged lipids and ions. Nat Struct Mol Biol 24:1081–1092CrossRefGoogle Scholar
  61. 61.
    Xu C et al (2008) Regulation of T cell receptor activation by dynamic membrane binding of the CD3epsilon cytoplasmic tyrosine-based motif. Cell 135:702–713CrossRefGoogle Scholar
  62. 62.
    Zhang H, Cordoba SP, Dushek O, van der Merwe PA (2011) Basic residues in the T-cell receptor zeta cytoplasmic domain mediate membrane association and modulate signaling. Proc Natl Acad Sci U S A 108:19323–19328CrossRefGoogle Scholar
  63. 63.
    Zidovetzki R, Rost B, Pecht I (1998) Role of transmembrane domains in the functions of B- and T-cell receptors. Immunol Lett 64:97–107CrossRefGoogle Scholar
  64. 64.
    Zimmermann K et al (2017) The cytosolic domain of T-cell receptor ζ associates with membranes in a dynamic equilibrium and deeply penetrates the bilayer. J Biol Chem 292:17746–17759CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Namita Dube
    • 1
    • 2
  • Jan K. Marzinek
    • 3
  • Robert C. Glen
    • 1
    • 4
  • Peter J. Bond
    • 3
    • 5
    Email author
  1. 1.Department of ChemistryUniversity of CambridgeCambridgeUK
  2. 2.Tata Institute of Fundamental ResearchHyderabadIndia
  3. 3.Bioinformatics Institute (A*STAR)SingaporeSingapore
  4. 4.Division of Integrative Systems Medicine and Digestive Diseases, Department of Surgery and CancerImperial College LondonLondonUK
  5. 5.Department of Biological SciencesNational University of SingaporeSingaporeSingapore

Personalised recommendations