Journal of Molecular Modeling

, 25:285 | Cite as

Theoretical study on the weak interaction and energy performance of nitroformate salts and nitroformate-based propellant formulations

  • Lixiaosong Du
  • Shaohua Jin
  • Yucun Liu
  • Mengxia Wang
  • Jing Li
  • Guanchao Lan
  • Pengsong Nie
  • Lijie LiEmail author
Original Paper


Nitroformate energetic salts are potential high-performance oxidizers which can be used in a solid propellant. The geometric configuration, the weak interaction, and the energy characteristics of hydrazine nitroformate (HNF), ammonium nitroformate (ANF), aminotriazole nitroformate (ATNF), guanidinium nitroformate (GNF), and aminotetrazole nitroformate (ATTNF) were investigated. Analysis results show that there exist hydrogen bonds in all salts except GNF. The binding energies of salt are between 390 and 430 kJ/mol and are positively correlated with densities and thermodynamic stabilities of salts but show reverse trend on impact sensitivities. Binding energy decomposition indicates that the main interaction in anion and cation is electrostatic interaction. The detonation velocity and specific impulse of five nitroformate salts are in the range of 8.6~9.1 km/s and 2200~2600 N s/kg, respectively. Considering the five selected salts as oxidizers, several propellant formulations were designed and the performances of formulations were predicted. The calculation results show that nitroformate salts obviously reduce characteristic signals and improve specific impulse for propellant formulations.


Theoretical study Nitroformate salts Weak interaction Binding energy Energy performance Propellant formulation 


Funding information

This work was supported by the Fundamental Research Funds for the Central Universities.


  1. 1.
    Dey A, Sikder AK, Talawar MB, Chottopadhyay S (2015) Towards new directions in oxidizers/energetic fillers for composite propellants: an overview. Cent Eur J Energetic Mater 12:377–399Google Scholar
  2. 2.
    Yang Z, Gong F, Ding L, Li Y, Yang G, Nie F (2017) Efficient sensitivity reducing and hygroscopicity preventing of ultra-fine ammonium perchlorate for high burning-rate propellants. Propellants Explos Pyrotech 42:809–815CrossRefGoogle Scholar
  3. 3.
    Balzer JE, Siviour CR, Walley SM, Proud WG, Field JE (2004) Behaviour of ammonium perchlorate–based propellants and a polymer–bonded explosive under impact loading. Proc R Soc Lond A Math Phys Eng Sci 460:781–806CrossRefGoogle Scholar
  4. 4.
    Venkatachalam S, Santhosh G, Ninan K (2004) An overview on the synthetic routes and properties of ammonium dinitramide (ADN) and other dinitramide salts. Propellants Explos Pyrotech 29:178–187CrossRefGoogle Scholar
  5. 5.
    Kumar P (2018) An overview on properties, thermal decomposition, and combustion behavior of ADN and ADN based solid propellants. Def Technol 14:661–673CrossRefGoogle Scholar
  6. 6.
    Göbel M, Klapötke TM (2007) Potassium-, ammonium-, hydrazinium-, guanidinium-, aminoguanidinium-, diaminoguanidinium-, triaminoguanidinium- and melaminiumnitroformate – synthesis, characterization and energetic properties. Z Anorg Allg Chem 633:1006–1017CrossRefGoogle Scholar
  7. 7.
    Baxter AF, Martin I, Christe KO, Haiges R (2018) Formamidinium nitroformate: an insensitive RDX alternative. J Am Chem Soc 140:15089–15098CrossRefGoogle Scholar
  8. 8.
    Huang Y, Gao H, Twamley B, Shreeve JM (2007) Synthesis and characterization of new energetic nitroformate salts. Eur J Inorg Chem 2007:2025–2030CrossRefGoogle Scholar
  9. 9.
    Göbel M, Klapötke TM, Mayer P (2006) Crystal structures of the potassium and silver salts of nitroform. Z Anorg Allg Chem 632:1043–1050CrossRefGoogle Scholar
  10. 10.
    Yang L, Zhang J, Zhang T, Zhang J, Cui Y (2009) Crystal structures, thermal decompositions and sensitivity properties of [cu(ethylenediamine)2(nitroformate)2] and [cd(ethylenediamine)3] (nitroformate)2. J Hazard Mater 164:962–967CrossRefGoogle Scholar
  11. 11.
    Wei H, He CL, Zhang JH, Shreeve JM (2015) Combination of 1,2,4-Oxadiazole and 1,2,5-oxadiazole moieties for the generation of high-performance energetic materials. Angew Chem Int Ed 54:9367–9371CrossRefGoogle Scholar
  12. 12.
    Liu GT, Qu HX (2002) A study on impact sensitivity, friction sensitivity and brisance of superfine RDX. J Nanjing Univ Sci TechnolGoogle Scholar
  13. 13.
    Jadhav PM, Radhakrishnan S, Ghule VD, Pandey RK (2015) Energetic salts from nitroformate ion. J Mol Model 21:134CrossRefGoogle Scholar
  14. 14.
    Zhang J, Zhang Q, Vo TT, Parrish DA, Shreeve JM (2015) Energetic salts with π-stacking and hydrogen-bonding interactions lead the way to future energetic materials. J Am Chem Soc 137:1697–1704CrossRefGoogle Scholar
  15. 15.
    Frisch MJ, Trucks GW, Schlegel HB (2013) Gaussian. Gaussian Inc., WallingfordGoogle Scholar
  16. 16.
    Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592CrossRefGoogle Scholar
  17. 17.
    Grimme S, Antony J, Ehrlich S, Helge K (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. J Chem Phys 132:154104CrossRefGoogle Scholar
  18. 18.
    Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Accounts 120:215–241CrossRefGoogle Scholar
  19. 19.
    Politzer P, Martinez J, Murray JS, Concha MC (2010) An electrostatic correction for improved crystal density predictions of energetic ionic compounds. Mol Phys 108:1391–1396CrossRefGoogle Scholar
  20. 20.
    Gao H, Ye C, Piekarski CM, Shreeve JM (2007) Computational characterization of energetic salts. J Phys Chem C 111:10718–10731CrossRefGoogle Scholar
  21. 21.
    Jenkins HDB, Tudela D, Glasser L (2002) Lattice potential energy estimation for complex ionic salts from density measurements. Inorg Chem 41:2364–2367CrossRefGoogle Scholar
  22. 22.
    Parker TM, Burns LA, Parrish RM, Ryno AG, Sherrill CD (2014) Levels of symmetry adapted perturbation theory (SAPT). I. Efficiency and performance for interaction energies. J Chem Phys 140:094106CrossRefGoogle Scholar
  23. 23.
    Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566CrossRefGoogle Scholar
  24. 24.
    Sućeska M (2004) Calculation of detonation parameters by EXPLO5 computer program. Mater Sci Forum 465-466:325–330CrossRefGoogle Scholar
  25. 25.
    Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498–6506CrossRefGoogle Scholar
  26. 26.
    Fuster F, Silvi B (2000) Does the topological approach characterize the hydrogen bond? Theor Chem Accounts 104:13–21CrossRefGoogle Scholar
  27. 27.
    Alikhani ME, Fuster F, Silvi B (2005) What can tell the topological analysis of ELF on hydrogen bonding? Struct Chem 16:203–210CrossRefGoogle Scholar
  28. 28.
    Fuster F, Grabowski SJ (2011) Intramolecular hydrogen bonds: the QTAIM and ELF characteristics. J Phys Chem A 115:10078–10086CrossRefGoogle Scholar
  29. 29.
    Grabowski SJ (2011) What is the covalency of hydrogen bonding? Chem Rev 111:2597–2625CrossRefGoogle Scholar
  30. 30.
    De Silva P, Corminboeuf C (2014) Simultaneous visualization of covalent and noncovalent interactions using regions of density overlap. J Chem Theory Comput 10:3745–3756CrossRefGoogle Scholar
  31. 31.
    Tian DY, Zhao FQ, Liu JH (2011) Handbook of energetic materials and the related compounds. National Defense Industry PressGoogle Scholar
  32. 32.
    Cerri S, Bohn MA, Menke K, Galfetti L (2014) Characterization of ADN/GAP-based and ADN/Desmophen®-based propellant formulations and comparison with AP analogues. Propellants Explos Pyrotech 39:192–204CrossRefGoogle Scholar
  33. 33.
    Selim K, Özkar S, Yilmaz L (2000) Thermal characterization of glycidyl azide polymer (GAP) and GAP-based binders for composite propellants. J Appl Polym Sci 77:538–546CrossRefGoogle Scholar
  34. 34.
    David L, Nechiporenko G, Manelis G (2011) Energetic performances of solid composite propellants. Cent Eur J Energetic Mater 8:25–38Google Scholar
  35. 35.
    DeLuca T, Rossettini L, Kappenstein C (2009) Ballistic characterization of AlH3-based propellants for solid and hybrid rocket propulsion. 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & ExhibitGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringBeijing Institute of TechnologyBeijingChina
  2. 2.School of Environment and Safety EngineeringNorth University of ChinaTaiyuanChina
  3. 3.Technology Center of Beijing Electromechanical Industry Co. LtdBeijingChina

Personalised recommendations