Diradical-singlet character of 1,3-dipoles affects reactivity of 1,3-dipolar cycloaddition reactions and intramolecular cyclization

  • Rodolfo G. FiorotEmail author
  • Felipe de S. Vilhena
  • José W. de M. CarneiroEmail author
Original Paper
Part of the following topical collections:
  1. QUITEL 2018 (44th Congress of Theoretical Chemists of Latin Expression)


1,3-Dipolar cycloaddition (1,3-DC) reactions are powerful synthetic tool to obtain highly functionalized 5-membered heterocycles, starting from a 1,3-dipole and a dipolarophile in a single step. The reactivity of these systems is usually rationalized in terms of Frontier Molecular Orbital Theory (FMOT), which neglects a possible contribution of an open-shell weakly coupled singlet-diradical specie. In this work, the broken-symmetry approach is used to estimate the singlet-diradical character of 18 dipoles of the second period of the periodic table, classified as allyl-type N-centered, allyl-type O-centered, and propargyl-type 1,3-dipoles, providing a rationalization for 1,3-DC reactivity. The intramolecular cyclization of bent allyl-type N- and O-centered dipoles into 3-membered rings was also analyzed, and revealed that the energetic change is associated with the spin densities of peripheral atoms. Finally, a close relationship between the energy for the ring-opening process of the cyclic configuration and the reactivity of 1,3-dipoles toward 1,3-dipolar cycloaddition reaction was also found.

Graphical abstract


1,3-Dipolar cycloaddition 1,3-dipoles Singlet-diradical Broken symmetry Zwitterion 


Funding information

The authors acknowledge CNPQ and FAPERJ (grant E-26/203.001/2017) for providing research grants and financial support.

Supplementary material

894_2019_4162_MOESM1_ESM.docx (3.6 mb)
ESM 1 (DOCX 3715 kb)


  1. 1.
    Lahann J (2009) Click chemistry for biotechnology and materials science. John Wiley & Sons, Ltd, ChichesterCrossRefGoogle Scholar
  2. 2.
    Girgis AD, Panda SS, Srour AM, Farag H, Ismail NSM, Elgendy M, Abdel-Aziz AK, Katritzky AR (2015) Rational design, synthesis and molecular modeling studies of novel anti-oncological alkaloids against melanoma. Org Biomol Chem 13:6619–6633. CrossRefPubMedGoogle Scholar
  3. 3.
    Li H, Aneja R, Chaiken I (2013) Click chemistry in peptide-based drug design. Molecules 18:9797–9817. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Mondal M, Unver MY, Pal A, Bakker M, Berrier SR, Hirsch AKH (2016) Fragment-based drug design facilitated by protein-templated click chemistry: fragment linking and -optimization of inhibitors of the aspartic protease endothiapepsin. Chemistry 22(42):14826–14830. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gold B, Aronoff MR, Raines RT (2016) 1,3-Dipolar cycloaddition with diazo groups: noncovalent interactions overwhelm strain. Org Lett 18(18):4466–4469. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Coffman KC, Hartley TP, Dallas JL, Kurth MJ (2012) Isoxazolodihydropyridinones: 1,3-dipolar cycloaddition of nitrile oxides onto 2,4-dioxopiperidines. ACS Comb Sci 14(4):280–284. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Padwa A, Pearson WH (2002) Synthetic applications of 1,3-dipolar cycloaddition chemistry toward heterocycles and natural products. The chemistry of heterocyclic compounds, vol 59. John Wiley & Sons, Inc., New YorkGoogle Scholar
  8. 8.
    Padwa A (1984) 1,3-Dipolar cycloaddition chemistry. Wiley, New YorkGoogle Scholar
  9. 9.
    Alker D, Hamblett G, Harwood LM, Robertson SM, Watkin DJ, Williams CE (1998) Application of enantiopure templated azomethine ylids to β-hydroxy-α-amino acid synthesis. Tetrahedron 54:6089–6098. CrossRefGoogle Scholar
  10. 10.
    Harwood LM, Robertson SM (1998) Double diastereocontrol in the synthesis of enantiomerically pure polyoxamic acid. Chem Commun 0:2641–2642. CrossRefGoogle Scholar
  11. 11.
    Alker D, Harwood LM, Williams CE (1998) Cycloadditions of aromatic imines to enantiomerically pure stabilized azomethine ylids: Construction of threo (2S, 3R)-3-aryl-2,3-diamino acids. Tetrahedron Lett 39:475–478. CrossRefGoogle Scholar
  12. 12.
    Kukushkin VY, Pombeiro AJL (2002) Additions to metal-activated organonitriles. Chem Rev 102:1771–1802 and cited references. CrossRefPubMedGoogle Scholar
  13. 13.
    Annunziata R, Cinquini M, Cozzi F, Raimondi L (1987) Stereoselective intramolecular nitrone cycloadditions to chiral allyl ethers. Tetrahedron 43:4051–4056. CrossRefGoogle Scholar
  14. 14.
    Huisgen R, Mloston G, Polborn K (1996) 1,3-Dipolar activity in cycloadditions of an aliphatic sulfine. J Org Chem 61(19):6570–6574. CrossRefPubMedGoogle Scholar
  15. 15.
    Shepherd TA, Jungheim LN (1988) Thioaldehydes in cycloaddition reactions. Synthesis of nuclear analogues of pyrazolidinone antibacterial agents. Tetrahedron Lett 29(40):5061–5064. CrossRefGoogle Scholar
  16. 16.
    Emamian S, Lu T, Moeinpour F (2015) Can the high reactivity of azomethine betaines in [3 + 2] cycloaddition reactions be explained using singlet-diradical character descriptors? What molecular mechanism is actually involved in these cycloadditions? RSC Adv 5:62248–62259. CrossRefGoogle Scholar
  17. 17.
    Ess DH, Houk KN (2008) Theory of 1,3-dipolar cycloadditions: distortion/interaction and frontier molecular orbital models. J Am Chem Soc 130(31):10187–10198. CrossRefPubMedGoogle Scholar
  18. 18.
    Goddard III WA, Dunning Jr TH, Hunt WJ, Jeffrey Hay P (1973) Generalized valence bond description of bonding in low-lying states of molecules. Acc Chem Res 6(11):368–376. CrossRefGoogle Scholar
  19. 19.
    Jeffrey Hay P, Dunning Jr TH, Goddard III WA (1975) Configuration interaction studies of O3 and O3 +. Ground and excited states. J Chem Phys 62:3912–3924. CrossRefGoogle Scholar
  20. 20.
    Jeffrey Hay P, Dunning Jr TH (1977) Geometries and energies of the excited states of O3 from ab initio potential energy surfaces. J Chem Phys 67:2290–2303. CrossRefGoogle Scholar
  21. 21.
    Braïda B, Galembeck SE, Hiberty PC (2017) Ozone and other 1,3-dipoles: toward a quantitative ,measure of diradical character. J Chem Theory Comput 13(7):3228–3235. CrossRefPubMedGoogle Scholar
  22. 22.
    Braida B, Walter C, Engels B, Hiberty PC (2010) A clear correlation between the diradical character of 1,3-dipoles and their reactivity toward ethylene or acetylene. J Am Chem Soc 132(22):7631–7637. CrossRefPubMedGoogle Scholar
  23. 23.
    Bachler V, Olbrich G, Neese F, Wieghardt K (2002) Theoretical evidence for the singlet diradical cof square planar nickel complexes containing two o-semiquinonato type ligands. Inorg Chem 41(16):4179–4193. CrossRefPubMedGoogle Scholar
  24. 24.
    Kumaraswamy G, Ankamma K, Pitchaiah A (2007) Tandem epoxide or aziridine ring opening by azide/copper catalyzed [3+2] cycloaddition: efficient synthesis of 1,2,3-triazolo β-hydroxy or β-tosylamino functionality Motif. J Org Chem 72(25):9822–9825. CrossRefPubMedGoogle Scholar
  25. 25.
    Frisch MJ, Truckss GW, Schlegel HB et al (2009) Gaussian 09, Revision A.01. Gaussian, Inc, Wallingford CTGoogle Scholar
  26. 26.
    Møller C, Plesset MS (1934) Note on an approximation treatment for many-electron systems. Phys Rev. 46(7):618–622. CrossRefGoogle Scholar
  27. 27.
    Head-Gordon M, Pople JA, Frisch MJ (1998) MP2 energy evaluation by direct methods. Chem Phys Lett 153(6):503–506. CrossRefGoogle Scholar
  28. 28.
    Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650–654. CrossRefGoogle Scholar
  29. 29.
    Li X, Frisch MJ (2006) Energy-represented direct inversion in the iterative subspace within a hybrid geometry optimization method. J Chem Theory and Comput 2(3):835–839. CrossRefGoogle Scholar
  30. 30.
    Luo YR (2007) Comprehensive handbook of chemical bond energies. CRC Press, Boca RatonCrossRefGoogle Scholar
  31. 31.
    Nájera C, Sansano JM (2003) Azomethine ylides in organic synthesis. Curr Org Chem 7(11):1105–1150 and cited references. CrossRefGoogle Scholar
  32. 32.
    Gomes PJS, Nunes CM, Pais AACC, Pinho e Melo TMVD, Arnaut LG (2006) 1,3-Dipolar cycloaddition of azomethine ylides generated from aziridines in supercritical carbon dioxide. Tetrahedon Lett 47(31):5475–5479. CrossRefGoogle Scholar
  33. 33.
    Yadav JS, Subba Reddy BV, Pandey SK, Srihari P, Prathap I (2001) Scandium triflate-catalyzed 1,3-dipolar cycloaddition of aziridines with alkenes. Tetrahedron Lett 42(51):9089–9092. CrossRefGoogle Scholar
  34. 34.
    Rassadin VA, Six Y (2016) Ring-opening, cycloaddition and rearrangement reactions of nitrogen-substituted cyclopropane derivatives. Tetrahedron 32(11):4701–4757. CrossRefGoogle Scholar
  35. 35.
    Grigg R, Markandu J (1989) Tandem nucleophilic substitution – 1,3 dipolar cycloaddition reactions of oximes with epoxides and dipolarophiles. Tetrahedron Lett 30(40):5489–5492. CrossRefGoogle Scholar
  36. 36.
    Foitzik RC, Lowe AJ, Pfeffer FM (2009) Microwave-accelerated 1,3-dipolar cycloaddition for the formation of fused [n]polynorbornanes. Tetrahedron Lett 50(21):2583–2584. CrossRefGoogle Scholar
  37. 37.
    Partridge KM, Guzei IA, Yoon TP (2010) Carbonyl imines from oxaziridines: generation and cycloaddition of N–O=C dipoles. Angew Chem Int Ed Engl 49(5):930–934. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Galley G, Jones PG, Pätzel M (1996) Enantiomerically pure isoxazolines by stereoselective 1,3-dipolar cycloaddition of silyl nitronates. Tetrahedron: Assym 7(7):2073–2082. CrossRefGoogle Scholar
  39. 39.
    Huisgen R, Gambra FP (1982) 1,3-dipolar cycloadditions of aromatic azoxy compounds to strained cyclo-alkenes. Tetrahedron Lett 23(1):55–58. CrossRefGoogle Scholar
  40. 40.
    Pellissier H (2007) Asymmetric 1,3-dipolar cycloadditions. Tetrahedron 63(16):3235–3285. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversidade Federal Fluminense (UFF)NiteróiBrazil
  2. 2.Instituto Federal de Educação, Ciências e Tecnologia do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations