Advertisement

Journal of Molecular Modeling

, 25:291 | Cite as

Interaction of H2O with (CuS)n, (Cu2S)n, and (ZnS)n small clusters (n = 1–4, 6): relation to the aggregation characteristics of metal sulfides at aqueous solutions

  • Kerry Wrighton-Araneda
  • René Ruby-Figueroa
  • Humberto Estay
  • Diego Cortés-ArriagadaEmail author
Original Paper
  • 62 Downloads
Part of the following topical collections:
  1. QUITEL 2018 (44th Congress of Theoretical Chemists of Latin Expression)

Abstract

The interaction of H2O onto small CuS, Cu2S, and ZnS clusters was theoretically studied by Density Functional Theory computations to get insights into the aggregation characteristics of metal sulfides at aqueous solutions. The results show the charge-controlled interactions with polarized solvent molecules are favored on the ZnS clusters compared with CuS and Cu2S clusters. Moreover, the chemical adsorption of H2O molecules is energetically favored onto ZnS clusters with higher interaction energies of up to 35.4 kcal/mol compared with CuS and Cu2S clusters (up to 31.3 kcal/mol), where the stability of H2O adsorption decreases as the size of the clusters increases. However, thermochemical analysis shows that the adsorption of H2O on copper sulfides is not a spontaneous process at room temperature. Additionally, the electrostatic energy of H2O onto the Cu2S and CuS clusters is lower than that associated with the H2O–H2O interactions, suggesting that copper precipitates prefer to bind between them at early stages of the precipitation process due to an unfavorable solvent-solute interaction. Dispersion forces play a relative key role in the interaction of water on copper sulfides, while for zinc sulfide clusters, the adsorption energy is slightly influenced by dispersion contributions. Accordingly, the aggregation of zinc sulfides in a water environment is expected to be lower compared with copper sulfides, and where the aggregation characteristics are not determined by the binding energy of the sulfides, but of the ability to interact with the solvent molecules. These statements were confirmed by experimental optical microscopy analysis and settling tests during precipitation processes in water. Therefore, this work allows proposing a simple strategy to study the aggregation characteristics of metal sulfides, which turns useful for use in hydrometallurgical applications.

Keywords

DFT calculations Metal sulfide precipitates Hydrometallurgy Clusters 

Notes

Acknowledgments

D.C-A acknowledges the computational resources through the CONICYT/FONDEQUIP project EQM180180. H.E and RRF acknowledge the FONDEF/IDeA Program, FONDEF/CONICYT 2017+ID17I10021. Powered@NLHPC: This research was partially supported by the supercomputing infrastructure of NLHPC (ECM-02).

Funding information

This work received financial support from the CONICYT/FONDECYT 11170289.

Compliance with ethical standards

Conflict of interest

The authors declare that there are no competing interests.

Supplementary material

894_2019_4161_MOESM1_ESM.docx (73 kb)
ESM 1 (DOCX 72 kb)

References

  1. 1.
    Estay H (2018) Designing the SART process – a review. Hydrometallurgy 176:147–165.  https://doi.org/10.1016/j.hydromet.2018.01.011 CrossRefGoogle Scholar
  2. 2.
    Estay H, Gim-Krumm M, Quilaqueo M (2018) Two-stage SART process: a feasible alternative for gold cyanidation plants with high zinc and copper contents. Minerals 8:392.  https://doi.org/10.3390/min8090392 CrossRefGoogle Scholar
  3. 3.
    Habashi F (1997) Handbook of extractive metallurgy. Wiley-Vch, WeinheimGoogle Scholar
  4. 4.
    Mokone TP, van Hille RP, Lewis AE (2010) Effect of solution chemistry on particle characteristics during metal sulfide precipitation. J. Colloid Interface Sci. 351:10–18.  https://doi.org/10.1016/j.jcis.2010.06.027 CrossRefPubMedGoogle Scholar
  5. 5.
    Deng Z, Oraby EA, Eksteen JJ (2019) The sulfide precipitation behaviour of Cu and Au from their aqueous alkaline glycinate and cyanide complexes. Sep. Purif. Technol. 218:181–190.  https://doi.org/10.1016/j.seppur.2019.02.056 CrossRefGoogle Scholar
  6. 6.
    Eksteen JJ, Oraby EA, Tanda BC (2017) A conceptual process for copper extraction from chalcopyrite in alkaline glycinate solutions. Miner. Eng. 108:53–66.  https://doi.org/10.1016/j.mineng.2017.02.001 CrossRefGoogle Scholar
  7. 7.
    Li Q, Liu T, Deng P (2015) Recovery of mercury and lead from wastewater by sulfide precipitation-flotation. Characterization of minerals, metals, and materials 2015. Springer International Publishing, Cham, pp 667–674.  https://doi.org/10.1002/9781119093404.ch84 CrossRefGoogle Scholar
  8. 8.
    Lewis AE (2010) Review of metal sulphide precipitation. Hydrometallurgy 104:222–234.  https://doi.org/10.1016/j.hydromet.2010.06.010 CrossRefGoogle Scholar
  9. 9.
    Fleming C, Melashvili M (2016) The SART process: killing the sacred cows. In: XXVIII International Mineral Processing Congress (IMPC 2016), Quebec, CanadaGoogle Scholar
  10. 10.
    Neese F (2012) The ORCA program system. Wiley Interdiscip Rev Comput Mol Sci 2:73–78.  https://doi.org/10.1002/wcms.81 CrossRefGoogle Scholar
  11. 11.
    Neese F (2018) Software update: the ORCA program system, version 4.0. Wiley Interdiscip Rev Comput Mol Sci 8:e1327.  https://doi.org/10.1002/wcms.1327 CrossRefGoogle Scholar
  12. 12.
    Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110:6158–6170.  https://doi.org/10.1063/1.478522 CrossRefGoogle Scholar
  13. 13.
    Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7:3297.  https://doi.org/10.1039/b508541a CrossRefPubMedGoogle Scholar
  14. 14.
    Weigend F (2006) Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 8:1057.  https://doi.org/10.1039/b515623h CrossRefPubMedGoogle Scholar
  15. 15.
    Kruse H, Grimme S (2012) A geometrical correction for the inter- and intra-molecular basis set superposition error in Hartree-Fock and density functional theory calculations for large systems. J. Chem. Phys. 136:154101.  https://doi.org/10.1063/1.3700154 CrossRefPubMedGoogle Scholar
  16. 16.
    Barone V, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J. Phys. Chem. A 102:1995–2001.  https://doi.org/10.1021/jp9716997 CrossRefGoogle Scholar
  17. 17.
    Schlegel HB (2007) Optimization of equilibrium geometries and transition structures. J. Comput. Chem.:249–286.  https://doi.org/10.1002/9780470142936.ch4 CrossRefGoogle Scholar
  18. 18.
    Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33:580–592.  https://doi.org/10.1002/jcc.22885 CrossRefPubMedGoogle Scholar
  19. 19.
    Glendening ED, Landis CR, Weinhold F (2013) NBO 6.0 : natural bond orbital analysis program. J. Comput. Chem. 34:1429–1437.  https://doi.org/10.1002/jcc.23266 CrossRefPubMedGoogle Scholar
  20. 20.
    Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32:1456–1465.  https://doi.org/10.1002/jcc.21759 CrossRefPubMedGoogle Scholar
  21. 21.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132:154104.  https://doi.org/10.1063/1.3382344 CrossRefPubMedGoogle Scholar
  22. 22.
    Juárez-Sánchez OJ, Perez-Peralta N, Herrera-Urbina R et al (2013) Structures and electronic properties of neutral (CuS)N clusters (N=1–6): a DFT approach. Chem. Phys. Lett. 570:132–135.  https://doi.org/10.1016/j.cplett.2013.03.072 CrossRefGoogle Scholar
  23. 23.
    Matxain JM, Fowler JE, Ugalde JM (2000) Small clusters of II-VI materials: Zni Oi, i=1-9. Phys. Rev. A 62:053201.  https://doi.org/10.1103/PhysRevA.62.053201 CrossRefGoogle Scholar
  24. 24.
    Juárez-Sánchez JO, Galván DH, Posada-Amarillas A (2017) Combined DFT and NBO approach to analyze reactivity and stability of (CuS)n (n = 1–12) clusters. Comput Theor Chem 1103:71–82.  https://doi.org/10.1016/j.comptc.2017.01.030 CrossRefGoogle Scholar
  25. 25.
    Luque-Ceballos JC, Posada-Borbón A, Herrera-Urbina R et al (2018) A theoretical study on the geometry and spectroscopic properties of ground-state and local minima isomers of (CuS)n=2-6 clusters. Phys E Low-dimensional Syst Nanostructures 97:1–7.  https://doi.org/10.1016/j.physe.2017.10.016 CrossRefGoogle Scholar
  26. 26.
    Ni B, Kramer JR, Werstiuk NH (2003) Atoms in molecules computational study on the molecular structure of (Cu2S)n clusters. J. Phys. Chem. A 107:2890–2897.  https://doi.org/10.1021/jp027587j CrossRefGoogle Scholar
  27. 27.
    Chuchev K, BelBruno JJ (2005) Small, nonstoichiometric zinc sulfide clusters. J. Phys. Chem. A 109:1564–1569.  https://doi.org/10.1021/jp0404908 CrossRefPubMedGoogle Scholar
  28. 28.
    Lalsare DL, Kshirsagar A (2012) First principles results of structural and electronic properties of ZnS clusters. Bull. Mater. Sci. 35:1055–1062.  https://doi.org/10.1007/s12034-012-0416-1 CrossRefGoogle Scholar
  29. 29.
    Li C-G, Shen Z-G, Hu Y-F et al (2017) Insights into the structures and electronic properties of Cun+1 μ and CunSμ (n = 1–12; μ = 0, ±1) clusters. Sci. Rep. 7:1345.  https://doi.org/10.1038/s41598-017-01444-6 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    La Porta FA, Gracia L, Andrés J et al (2014) A DFT study of structural and electronic properties of ZnS polymorphs and its pressure-induced phase transitions. J. Am. Ceram. Soc. 97:4011–4018.  https://doi.org/10.1111/jace.13191 CrossRefGoogle Scholar
  31. 31.
    Gurin V (1998) Ab-initio calculations of small CdxSy and ZnxSy (x,y ≤ 6) clusters. Solid State Commun. 108:389–392.  https://doi.org/10.1016/S0038-1098(98)00367-6 CrossRefGoogle Scholar
  32. 32.
    Li C-G, Yuan Y-Q, Hu Y-F et al (2016) Density functional theory study of the structures and electronic properties of copper and sulfur doped copper clusters. Comput Theor Chem 1080:47–55.  https://doi.org/10.1016/j.comptc.2016.01.018 CrossRefGoogle Scholar
  33. 33.
    Pauling L (1960) The nature of the chemical bond. Cornell University Press, IthacaGoogle Scholar
  34. 34.
    Nguyen KA, Pachter R, Day PN (2013) Computational prediction of structures and optical excitations for nanoscale ultrasmall ZnS and CdSe clusters. J. Chem. Theory Comput. 9:3581–3596.  https://doi.org/10.1021/ct4001944 CrossRefPubMedGoogle Scholar
  35. 35.
    Meng X, Xiao H, Wen X et al (2013) Dependence on the structure and surface polarity of ZnS photocatalytic activities of water splitting: first-principles calculations. Phys. Chem. Chem. Phys. 15:9531.  https://doi.org/10.1039/c3cp50330e CrossRefPubMedGoogle Scholar
  36. 36.
    Feyereisen MW, Feller D, Dixon DA (1996) Hydrogen bond energy of the water dimer. J. Phys. Chem. 100:2993–2997.  https://doi.org/10.1021/jp952860l CrossRefGoogle Scholar
  37. 37.
    Silvestrelli PL (2009) Improvement in hydrogen bond description using van der Waals-corrected DFT: the case of small water clusters. Chem. Phys. Lett. 475:285–288.  https://doi.org/10.1016/j.cplett.2009.05.049 CrossRefGoogle Scholar
  38. 38.
    Xantheas SS, Burnham CJ, Harrison RJ (2002) Development of transferable interaction models for water. II. Accurate energetics of the first few water clusters from first principles. J. Chem. Phys. 116:1493–1499.  https://doi.org/10.1063/1.1423941 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Programa Institucional de Fomento a la Investigación, Desarrollo e InnovaciónUniversidad Tecnológica MetropolitanaSan JoaquínChile
  2. 2.Advanced Mining Technology Center (AMTC)University of ChileSantiagoChile

Personalised recommendations