Journal of Molecular Modeling

, 25:289 | Cite as

Position-dependent mass Schrödinger equation for exponential-type potentials

  • G. OvandoEmail author
  • J. J. Peña
  • J. Morales
  • J. López-Bonilla
Original Paper
Part of the following topical collections:
  1. QUITEL 2018 (44th Congress of Theoretical Chemists of Latin Expression)


In quantum chemical calculations, there are two facts of particular relevance: the position-dependent mass Schrödinger equation (PDMSE) and the exponential-type potentials used in the theoretical study of vibrational properties for diatomic molecules. Accordingly, in this work, the treatment of exactly solvable PDMSE for exponential-type potentials is presented. The proposal is based on the exactly solvable constant mass Schrödinger equation (CMSE) for a class of multiparameter exponential-type potentials, adapted to the position-dependent-mass (PDM) kinetic energy operator in the O von Roos formulation. As a useful application, we consider a PDM distribution of the form \(m(x)=c^{2}\left (1\pm \text {be}^{-\lambda x}\right )^{-r}\), where the different parameters can be adjusted depending on the potential under study. The principal advantage of the method is that solution of different specific PDM exponential potential models are obtained as particular cases from the proposal by means of a simple choice of the involved exponential parameters. This means that is not necessary resort to specialized methods for solving second-order differential equations as usually done for each specific potential. Also, the usefulness of our results is shown with the calculation of s-waves scattering cross-section for the Hulthén potential although this kind of study can be extended to other specific potential models such as PDM deformed potentials.


Canonical transformation Schrödinger equation Position-dependent effective mass Exponential-type potentials Condensed matter systems 


Funding information

This work was partially supported by the projects UAM-A-CBI-2232004 and 009. We are grateful with the SNI—Conacyt—México for the stipend received.


  1. 1.
    Bastard G (1988) Wave mechanics applied to semiconductor heterostructures. Editions de Physique, Les UlisGoogle Scholar
  2. 2.
    Einevoll GT, Hemmer PC, Thomsen J (1990) . Phys Rev B 42:3485CrossRefGoogle Scholar
  3. 3.
    Weisbuch C, Vinter B (1993) Quantum semiconductor heterostructures. Academic Press, New YorkGoogle Scholar
  4. 4.
    Serra L, Lipparini E (1997) . Europhys Lett 40:667CrossRefGoogle Scholar
  5. 5.
    Harrison P (2000) Quantum wells, wires and dots. Wiley, New YorkGoogle Scholar
  6. 6.
    Geller MR, Kohn W (1993) . Phys Rev Lett 70:3103CrossRefGoogle Scholar
  7. 7.
    Barranco M, Hernández E S, Navarro J (1996) . Phys Rev B 54:7394CrossRefGoogle Scholar
  8. 8.
    Plastino AR, Casas M, Plastino A (2001) . Phys Lett A 281:297CrossRefGoogle Scholar
  9. 9.
    Ring P, Schuck P (1980) The nuclear many body problem. Springer-Verlag, New York, p 211CrossRefGoogle Scholar
  10. 10.
    Barranco M, Pi M, Gatica SM, Hernandez ES, Navarro J (1997) . Phys Rev B 56:8997CrossRefGoogle Scholar
  11. 11.
    Bonatsos D, Georgoudis PE, Lenis D, Minkov N, Quesne C (2011) . Phys Rev C 83:044321CrossRefGoogle Scholar
  12. 12.
    Alimohammadi M, Hassanabadi H, Zare S (2017) . Nucl Phys A 960:78CrossRefGoogle Scholar
  13. 13.
    Arias de Saavedra F, Boronat J, Polls A, Fabrocini A (1994) . Phys Rev B 50:4248CrossRefGoogle Scholar
  14. 14.
    Von Roos O (1983) . Phys Rev B 27:7547CrossRefGoogle Scholar
  15. 15.
    BenDaniel DJ, Duke CB (1966) . Phys Rev B 152:683CrossRefGoogle Scholar
  16. 16.
    Gora T, Williams F (1969) . Phys Rev 177:1179CrossRefGoogle Scholar
  17. 17.
    Zhu QG, Kroemer H (1983) . Phys Rev B 27:3519CrossRefGoogle Scholar
  18. 18.
    Li T, Kuhn KJ (1993) . Phys Rev B 47:12760CrossRefGoogle Scholar
  19. 19.
    Plastino AR, Rigo A, Casas M, Garcias F, Plastino A (1999) . Phys Rev A 60:4318CrossRefGoogle Scholar
  20. 20.
    Milanovic V, Ikovic Z (1999) . J Phys A: Math Gen 32:7001CrossRefGoogle Scholar
  21. 21.
    Karthiga S, Chithiika RV, Senthilvelan M (2018) . Phys Lett A 382:1645CrossRefGoogle Scholar
  22. 22.
    Bagchi B, Bannerjee A, Quesne C, Tkachuk VM (2005) . J Phys A: Math Gen 38:2929CrossRefGoogle Scholar
  23. 23.
    Quesne C, Bagchi B, Banerjee A, Tkachuk VM (2006) . Bulg J Phys 33:308Google Scholar
  24. 24.
    Aktas M, Sever R (2007) . J Math Chem 43:92CrossRefGoogle Scholar
  25. 25.
    Ganguly A, Nieto LM (2007) . J Phys A: Math Gen 40:7265CrossRefGoogle Scholar
  26. 26.
    Quesne C (2009) . SIGMA 5:046Google Scholar
  27. 27.
    Roy B, Roy P (2002) . J Phys A: Math Gen 35:3961CrossRefGoogle Scholar
  28. 28.
    Koc R, Koca M (2003) . J Phys A: Math Gen 36:8105CrossRefGoogle Scholar
  29. 29.
    Tezcan C, Sever R (2007) . J Math Chem 42:387CrossRefGoogle Scholar
  30. 30.
    Ju GX, Cai CY, Xiang Y, Ren ZZ (2007) . Commun Theor Phys 47:1001CrossRefGoogle Scholar
  31. 31.
    Peña J J, Ovando G, Morales J, García-Ravelo J, Pacheco-García C (2007) . Int J Quant Chem 107:3039CrossRefGoogle Scholar
  32. 32.
    Ikhdair SM (2012) . Mol Phy 110:1415CrossRefGoogle Scholar
  33. 33.
    García-Martínez J, García-Ravelo J, Morales J Peña JJ (2012) . Int J Quant Chem 112:195Google Scholar
  34. 34.
    Ovando G, Peña JJ, Morales J, López-Bonilla J (2017) . J Phys: Conf Ser 792:012037Google Scholar
  35. 35.
    Peña J J, Ovando G, Morales J, García-Ravelo J (2017) . J Mol Mode. 23:265CrossRefGoogle Scholar
  36. 36.
    Sever R, Tezcan C, Yesiltas Ö , Bucurgat M (2008) . Int J Theor Phys 47:2243CrossRefGoogle Scholar
  37. 37.
    Meyur S (2011) . Bulg J Phys 38:357Google Scholar
  38. 38.
    Meyur S, Maji S, Debnath S (2014) Adv High Ener Phys 952597Google Scholar
  39. 39.
    Ovando G, Morales J, López-Bonilla J (2013) . J Mol Model 19(5):2007–2014CrossRefGoogle Scholar
  40. 40.
    Yazarloo BH, Mehraban H, Hassanabadi H (2016) . Chin. Phys. B 25(8):080302CrossRefGoogle Scholar
  41. 41.
    Abramowitz M, Stegun I A (eds) (1965) Handbook of mathematical functions with formulas graphs and mathematical tables. Dover, New YorkGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • G. Ovando
    • 1
    Email author
  • J. J. Peña
    • 1
  • J. Morales
    • 1
  • J. López-Bonilla
    • 2
  1. 1.CBI - Area de Física Atómica Molecular AplicadaUniversidad Autónoma Metropolitana - AzcapotzalcoCDMXMexico
  2. 2.ESIME-ZacatencoInstituto Politécnico NacionalCDMXMexico

Personalised recommendations