Advertisement

Journal of Molecular Modeling

, 25:270 | Cite as

Comparison of catalytic performance of metal-modified SAPO-34: a molecular simulation study

  • Xiuqin Dong
  • Chang Liu
  • Qing Miao
  • Yingzhe Yu
  • Minhua ZhangEmail author
Original Paper
  • 44 Downloads

Abstract

Molecular simulation calculation has been performed to investigate the catalytic performance of metal-modified ((Fe, Co, Ni) SAPO-34 in methanol-to-olefins (MTO) process. Adsorption amount and adsorption heats of the reactant, methanol, and the main products, ethylene and propylene, in SAPO-34 and MeAPSO-34 (Me = Fe, Co, Ni) zeolites were analyzed and compared both in single adsorption and co-adsorption process with a Monte Carlo (MC) simulation method. On the other hand, with a molecular dynamics (MD) simulation method, the system energy of the molecules in three different positions was calculated and compared. The simulation results show that modifying SAPO-34 with Fe, Co, and Ni is beneficial to improve the selectivity of light olefins during the MTO process, especially for that of ethylene. And among the three MeAPSO-34 zeolites, the catalytic performance of NiAPSO-34 is the best.

Keywords

MTO SAPO-34 Light olefins Molecular dynamics Monte Carlo 

Notes

References

  1. 1.
    Chang CD, Lang WH, Smith RL (1979) The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts : II. Pressure effects. J Catal 47(2):249–259CrossRefGoogle Scholar
  2. 2.
    Nicholas CP (2017) Applications of light olefin oligomerization to the production of fuels and chemicals. Applied Catalysis a-General 543:82–97CrossRefGoogle Scholar
  3. 3.
    Chen D, Moljord K, Fuglerud T, Holmen A (1999) The effect of crystal size of SAPO-34 on the selectivity and deactivation of the MTO reaction. Microporous Mesoporous Mater 29(1–2):191–203CrossRefGoogle Scholar
  4. 4.
    Chen D, Moljord K, Holmen A (2012) A methanol to olefins review: diffusion, coke formation and deactivation SAPO type catalysts. Microporous Mesoporous Mater 164:239–250CrossRefGoogle Scholar
  5. 5.
    Aguayo AT, Gayubo AG, Vivanco R, Olazar M, Bilbao J (2005) Role of acidity and microporous structure in alternative catalysts for the transformation of methanol into olefins. Appl Catal A-Gen 283(1–2):197–207CrossRefGoogle Scholar
  6. 6.
    Rojo-Gama D, Signorile M, Bonino F, Bordiga S, Olsbye U, Lillerud KP, Beato P, Svelle S (2017) Structure-deactivation relationships in zeolites during the methanol-to-hydrocarbons reaction: complementary assessments of the coke content. J Catal 351:33–48CrossRefGoogle Scholar
  7. 7.
    Barthos R, Lonyi F, Onyestyak G, Valyon J (2000) An IR, FR, and TPD study on the acidity of H-ZSM-5, sulfated zirconia, and sulfated zirconia-titania using ammonia as the probe molecule. J Phys Chem B 104(31):7311–7319CrossRefGoogle Scholar
  8. 8.
    Davidova N, Shopov D, Jaeger N, Schulz-Ekloff G (1979) Conversion of methanol to hydrocarbons over metal-zeolite catalysts. React Kinet Catal Lett 12(3):229–234CrossRefGoogle Scholar
  9. 9.
    El-Malki EM, van Santen RA, Sachtler WMH (1999) Introduction of Zn, Ga, and Fe into HZSM-5 cavities by sublimation: identification of acid sites. J Phys Chem B 103(22):4611–4622CrossRefGoogle Scholar
  10. 10.
    Biscardi JA, Meitzner GD, Iglesia E (1998) Structure and density of active Zn species in Zn/H-ZSM5 propane aromatization catalysts. J Catal 179(1):192–202CrossRefGoogle Scholar
  11. 11.
    Pinisakul A, Kritayakornupong C, Ruangpornvisuti V (2008) Molecular modeling of nitrosamines adsorbed on H-ZSM-5 zeolite: an ONIOM study. J Mol Model 14(11):1035–1041CrossRefGoogle Scholar
  12. 12.
    Bjorgen M, Svelle S, Joensen F, Nerlov J, Kolboe S, Bonino F, Palumbo L, Bordiga S, Olsbye U (2007) Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: on the origin of the olefinic species. J Catal 249(2):195–207CrossRefGoogle Scholar
  13. 13.
    Jiang X, Su XF, Bai XF, Li YZ, Yang L, Zhang K, Zhang Y, Liu Y, Wu W (2018) Conversion of methanol to light olefins over nanosized [Fe, Al] ZSM-5 zeolites: influence of Fe incorporated into the framework on the acidity and catalytic performance. Microporous Mesoporous Mater 263:243–250CrossRefGoogle Scholar
  14. 14.
    Goetze J, Weckhuysen BM (2018) Spatiotemporal coke formation over zeolite ZSM-5 during the methanol-to-olefins process as studied with operando UV-vis spectroscopy: a comparison between H-ZSM-5 and Mg-ZSM-5. Cat Sci Technol 8(6):1632–1644CrossRefGoogle Scholar
  15. 15.
    Brent MTL, Celeste AM, Patton RL, Gajek RT, Cannan TR, Lanigen EM (1984) Crystalline silicoaluminophosphatesGoogle Scholar
  16. 16.
    Tan J, Liu ZM, Bao XH, Liu XC, Han XW, He CQ, Zhai RS (2002) Crystallization and Si incorporation mechanisms of SAPO-34. Microporous Mesoporous Mater 53(1–3):97–108CrossRefGoogle Scholar
  17. 17.
    Izadbakhsh A, Farhadi F, Khorasheh F, Sahebdelfar S, Asadi M, Yan ZF (2009) Key parameters in hydrothermal synthesis and characterization of low silicon content SAPO-34 molecular sieve. Microporous Mesoporous Mater 126(1–2):1–7CrossRefGoogle Scholar
  18. 18.
    Liu Z, Sun C, Wang G, Wang Q, Cai G (2000) New progress in R&D of lower olefin synthesis. Fuel Process Technol 62(2):161–172CrossRefGoogle Scholar
  19. 19.
    Djieugoue MA, Prakash AM, Kevan L (2000) Catalytic study of methanol-to-olefins conversion in four small-pore silicoaluminophosphate molecular sieves: influence of the structural type, nickel incorporation, nickel location, and nickel concentration. J Phys Chem B 104(27):6452–6461CrossRefGoogle Scholar
  20. 20.
    Salmasi M, Fatemi S, Najafabadi AT (2011) Improvement of light olefins selectivity and catalyst lifetime in MTO reaction; using Ni and Mg-modified SAPO-34 synthesized by combination of two templates. J Ind Eng Chem 17(4):755–761CrossRefGoogle Scholar
  21. 21.
    Dai WL, Scheibe M, Li LD, Guan NJ, Hunger M (2012) Effect of the methanol-to-olefin conversion on the PFG NMR self-diffusivities of ethane and ethene in large-crystalline SAPO-34. J Phys Chem C 116(3):2469–2476CrossRefGoogle Scholar
  22. 22.
    Aghaei E, Haghighi M, Pazhohniya Z, Aghamohammadi S (2016) One-pot hydrothermal synthesis of nanostructured ZrAPSO-34 powder: effect of Zr-loading on physicochemical properties and catalytic performance in conversion of methanol to ethylene and propylene. Microporous Mesoporous Mater 226:331–343CrossRefGoogle Scholar
  23. 23.
    Johannes JM, C FS, An V, Machteld M, Wilfried M (2002) Silicoaluminophosphate molecular sieveGoogle Scholar
  24. 24.
    Varzaneh AZ, Towfighi J, Sahebdelfar S (2016) Carbon nanotube templated synthesis of metal containing hierarchical SAPO-34 catalysts: impact of the preparation method and metal avidities in the MTO reaction. Microporous Mesoporous Mater 236:1–12CrossRefGoogle Scholar
  25. 25.
    Kang M, Yi SH, Lee HI, Yie JE, Kim JM (2002) Reversible replication between ordered mesoporous silica and mesoporous carbon. Chem Commun (17):1944–1945Google Scholar
  26. 26.
    Sutay B, Yurtsever M (2017) Adsorption of dihalogen molecules on pristine graphene surface: Monte Carlo and molecular dynamics simulation studies. J Mol Model 23(5):10CrossRefGoogle Scholar
  27. 27.
    Harami HR, Asghari M (2019) 3-Aminopropyltriethoxysilane-aided cross-linked chitosan membranes for gas separation: grand canonical Monte Carlo and molecular dynamics simulations. J Mol Model 25(2):11Google Scholar
  28. 28.
    Arellano M, Bond S (1991) Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Rev Econ Stud 58(2):277–297CrossRefGoogle Scholar
  29. 29.
    Smith RA, Ionides EL, King AA (2017) Infectious disease dynamics inferred from genetic data via sequential Monte Carlo. Mol Biol Evol 34(8):2065–2084CrossRefGoogle Scholar
  30. 30.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38 27-38CrossRefGoogle Scholar
  31. 31.
    Hajilar S, Shafei B, Cheng T, Jaramillo-Botero A (2017) Reactive molecular dynamics simulations to understand mechanical response of Thaumasite under temperature and strain rate effects. J Phys Chem A 121(24):4688–4697CrossRefGoogle Scholar
  32. 32.
    Rappe AK, Casewit CJ, Colwell KS, Goddard WA, Skiff WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114(25):10024–10035CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xiuqin Dong
    • 1
    • 2
  • Chang Liu
    • 1
    • 2
  • Qing Miao
    • 1
    • 2
  • Yingzhe Yu
    • 1
    • 2
  • Minhua Zhang
    • 1
    • 2
    Email author
  1. 1.Key Laboratory for Green Chemical Technology of Ministry of Education, R&D center for Petrochemical TechnologyTianjin UniversityTianjinPeople’s Republic of China
  2. 2.Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)TianjinPeople’s Republic of China

Personalised recommendations