Advertisement

Journal of Molecular Modeling

, 25:284 | Cite as

Exploring the potential of novel transition metal complexes derived from ONO donor type ligand: a quantum chemical study

  • Shamraiz Hussain Talib
  • Sajjad Hussain
  • Shabbir MuhammadEmail author
  • Sambath Baskaran
  • Javed Iqbal
  • Khurshid Ayub
Original Paper
  • 20 Downloads

Abstract

In the present quantum chemical investigation, we predict several novel transition metal complexes which are designed using tridentate ONO donor type Schiff base ligand (2-((E)-((Z)-4-hydroxypent-3-en-2-ylidene) amino) phenol). The stable molecular geometries of newly designed metal complexes are obtained using density functional theory (DFT) methods. Several properties including geometrical parameters, energies of frontier molecular orbitals (FMOs), and interaction energies are calculated for optimized metal complexes. The more negative interaction energies illustrate more susceptibilities of the reaction of metal cations with ligand. The charge transfers from ligand to metals are observed in the d7 and d8 metal complexes while it is seen as backdonation of charge from metal to ligand in the d10 complexes. The quantum chemical characterizations are performed for calculating UV-visible spectra and IR frequencies for all the designed metal complexes. All designed metal complexes show multiple absorption peaks in UV region ranging from 184 to 376 nm, which are related to metal to ligand and ligand to metal charge transfer processes. The IR frequency analysis shows that the −C=N− stretching frequency of ligand in the region of 1650–1580 cm−1 is decreased by between 50 and 100 cm−1, which may assign the coordination of ligand with metal via nitrogen. Moreover, the investigations of nonlinear optical (NLO) polarizabilities among selected complexes show that these complexes may possess good potential for NLO applications. The most interesting results are found about the third-order NLO polarizabilities (γ||) where the γ|| amplitudes are found to be 60.01 × 10−36, 56.48 × 10−36, 90.04 × 10−36, and 64.57 × 10−36 esu for complexes 1, 2, 9, and 10, respectively. Thus, we believe that the present investigation may bring the newly designed metal complexes in the limelight of scientific interest for their practical realization in optical and nonlinear optical applications.

Graphical abstract

Several novel transition metal complexes are designed using tridentate ONO donor type Schiff base ligand as efficient NLO materials.

Keywords

DFT study Schiff base Transition metal complexes ONO donor ligand Third-order NLO polarizability 

Notes

Acknowledgments

The authors would like to extend their appreciation to the Deanship of Scientific Research at King Khalid University Saudi Arabia.

Funding information

The authors received funding for this work from the Deanship of Scientific Research at King Khalid University through Research Groups Project under grant number (GRP-46-40).

Supplementary material

894_2019_4157_MOESM1_ESM.docx (39 kb)
ESM 1 (DOCX 39 kb)

References

  1. 1.
    Raman N, Johnson Raja S, Sakthivel A (2009) Transition metal complexes with Schiff-base ligands: 4-aminoantipyrine based derivatives–a review. J Coord Chem 62(5):691–709CrossRefGoogle Scholar
  2. 2.
    Kumar S, Dhar DN, Saxena P (2009) Applications of metal complexes of Schiff bases-a reviewGoogle Scholar
  3. 3.
    Abu-Dief AM, Mohamed IM (2015) A review on versatile applications of transition metal complexes incorporating Schiff bases. Beni-suef Univ J Basic Appl Sci 4(2):119–133CrossRefGoogle Scholar
  4. 4.
    Cozzi PG (2004) Metal–salen Schiff base complexes in catalysis: practical aspects. Chem Soc Rev 33(7):410–421PubMedCrossRefGoogle Scholar
  5. 5.
    Al Zoubi W (2013) Biological activities of Schiff bases and their complexes: a review of recent works. Int J Org Chem 3(03):73CrossRefGoogle Scholar
  6. 6.
    Nichols AW, Chatterjee S, Sabat M, Machan CW (2018) Electrocatalytic reduction of CO2 to formate by an iron Schiff base complex. lnorg Chem 57(4):2111–2121CrossRefGoogle Scholar
  7. 7.
    Munawar KS, Haroon SM, Hussain SA, Raza H (2018) Schiff bases: multipurpose pharmacophores with extensive biological applications. J Basic Appl Sci 14:217–229CrossRefGoogle Scholar
  8. 8.
    Torabi S, Mohammadi M, Shirvani M (2018) Antidiabetic, antioxidant, antibacterial, and antifungal activities of vanadyl Schiff base complexes. Trends Pharm Sci 4(2)Google Scholar
  9. 9.
    Zhang W, Ekomo RE, Roussel C, Moriwaki H, Abe H, Han J, Soloshonok VA (2018) Axially chiral Ni (II) complexes of α-amino acids: separation of enantiomers and kinetics of racemization. Chirality 30(4):498–508PubMedCrossRefGoogle Scholar
  10. 10.
    Tarafder MTH, Ali MA, Wee DJ, Azahari K, Silong S, Crouse KA (2000) Complexes of a tridentate ONS Schiff base. Synthesis and biological properties. Transit Met Chem 25(4):456–460CrossRefGoogle Scholar
  11. 11.
    Bluhm ME, Ciesielski M, Görls H, Walter O, Döring M (2003) Complexes of Schiff bases and intermediates in the copper-catalyzed oxidative heterocyclization by atmospheric oxygen §. lnorg Chem 42(26):8878–8885CrossRefGoogle Scholar
  12. 12.
    Singh SK, Eng J, Atanasov M, Neese F (2017) Covalency and chemical bonding in transition metal complexes: an ab initio based ligand field perspective. Coord Chem Rev 344:2–25CrossRefGoogle Scholar
  13. 13.
    Khanmohammadi H, Abnosi MH, Hosseinzadeh A, Erfantalab M (2008) Synthesis, biological and computational study of new Schiff base hydrazones bearing 3-(4-pyridine)-5-mercapto-1, 2, 4-triazole moiety. Spectrochim Acta A Mol Biomol Spectrosc 71(4):1474–1480PubMedCrossRefGoogle Scholar
  14. 14.
    Liu C-G, Guan X-H, Su Z-M (2011) Computational study on redox-switchable 2D second-order nonlinear optical properties of push− pull mono-tetrathiafulvalene-bis (salicylaldiminato) Zn (II) Schiff base complexes. J Phys Chem C 115(13):6024–6032CrossRefGoogle Scholar
  15. 15.
    Sönmez M, Levent A, Şekerci M (2004) Synthesis, characterization, and thermal investigation of some metal complexes containing polydentate ONO-donor heterocyclic Schiff base ligand. Russ J Coord Chem 30(9):655–660CrossRefGoogle Scholar
  16. 16.
    Xu H-L, Li Z-R, Su Z-M, Muhammad S, Gu FL, Harigaya K (2009) Knot-isomers of Mobius cyclacene: how does the number of knots influence the structure and first hyperpolarizability? J Phys Chem C 113(34):15380–15383CrossRefGoogle Scholar
  17. 17.
    Muhammad S (2015) Second-order nonlinear optical properties of dithienophenazine and TTF derivatives: a butterfly effect of dimalononitrile substitutions. J Mol Graphics Modell 59:14–20CrossRefGoogle Scholar
  18. 18.
    Muhammad S, Nakano M, Al-Sehemi AG, Irfan A, Chaudhry AR, Tonami T, Ito S, Kishi R, Kitagawa Y (2018) Exploring the novel donor-nanotube archetype as an efficient third-order nonlinear optical material: asymmetric open-shell carbon nanotubes. Nanoscale.  https://doi.org/10.1039/C8NR03009J PubMedCrossRefGoogle Scholar
  19. 19.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16 Rev. A.03. Wallingford, CTGoogle Scholar
  20. 20.
    Chachkov D, Mikhailov O (2009) DFT B3LYP calculation of the spatial structure of Co (II), Ni (II), and Cu (II) template complexes formed in ternary systems metal (II) ion-dithiooxamide-formaldehyde. Russ J Inorg Chem 54(12):1952CrossRefGoogle Scholar
  21. 21.
    Zarić SD (1999) Cation–π interaction with transition-metal complex as cation. Chem Phys Lett 311(1–2):77–80CrossRefGoogle Scholar
  22. 22.
    Chiodo S, Russo N, Sicilia E (2006) LANL2DZ basis sets recontracted in the framework of density functional theory. J Chem Phys 125(10):104107PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Legge FS, Nyberg GL, Peel JB (2001) DFT calculations for Cu-, Ag-, and Au-containing molecules. J Phys Chem A 105(33):7905–7916CrossRefGoogle Scholar
  24. 24.
    Champagne B, Perpete EA, Jacquemin D, van Gisbergen SJ, Baerends E-J, Soubra-Ghaoui C, Robins KA, Kirtman B (2000) Assessment of conventional density functional schemes for computing the dipole moment and (hyper) polarizabilities of push− pull π-conjugated systems. J Phys Chem A 104(20):4755–4763CrossRefGoogle Scholar
  25. 25.
    Zhao Y, Truhlar DG (2011) Applications and validations of the Minnesota density functionals. Chem Phys Lett 502(1):1–13CrossRefGoogle Scholar
  26. 26.
    Burland D, Walsh C, Kajzar F, Sentein C (1991) Comparison of hyperpolarizabilities obtained with different experimental methods and theoretical techniques. JOSA B 8(11):2269–2281CrossRefGoogle Scholar
  27. 27.
    Muhammad S, Xu H, Janjua MRSA, Su Z, Nadeem M (2010) Quantum chemical study of benzimidazole derivatives to tune the second-order nonlinear optical molecular switching by proton abstraction. PCCP 12(18):4791–4799PubMedCrossRefGoogle Scholar
  28. 28.
    Pereira Silva PS, Pereira Gonçalves MA, Silva MR, Zawadzka A, Sahraoui B, Paixão JA (2018) NLO properties of a triphenlyguanidine salt: the importance of pseudo-symmetry. Opt Mater 84:606–613.  https://doi.org/10.1016/j.optmat.2018.07.064 CrossRefGoogle Scholar
  29. 29.
    Zawadzka A, Waszkowska K, Karakas A, Płóciennik P, Korcala A, Wisniewski K, Karakaya M, Sahraoui B (2018) Diagnostic and control of linear and nonlinear optical effects in selected self-assembled metallophthalocyanine chlorides nanostructures. Dyes Pigments 157:151–162.  https://doi.org/10.1016/j.dyepig.2018.04.048 CrossRefGoogle Scholar
  30. 30.
    Muhammad S, Xu H, Liao Y, Kan Y, Su Z (2009) Quantum mechanical design and structure of the Li@ B10H14 basket with a remarkably enhanced electro-optical response. J Am Chem Soc 131(33):11833–11840PubMedCrossRefGoogle Scholar
  31. 31.
    Muhammad S, Al-Sehemi AG, Irfan A, Algarni H, Qiu Y, Xu H, Su Z, Iqbal J (2018) The substitution effect of heterocyclic rings to tune the optical and nonlinear optical properties of hybrid chalcones: a comparative study. J Mol Graphics Modell 81:25–31.  https://doi.org/10.1016/j.jmgm.2018.02.005 CrossRefGoogle Scholar
  32. 32.
    Muhammad S, Irfan A, Shkir M, Chaudhry AR, Kalam A, AlFaify S, Al-Sehemi AG, Al-Salami AE, Yahia IS, Xu HL (2015) How does hybrid bridging core modification enhance the nonlinear optical properties in donor-π-acceptor configuration? A case study of dinitrophenol derivatives. J Comput Chem 36(2):118–128PubMedCrossRefGoogle Scholar
  33. 33.
    Muhammad S, Irfan A, Chaudhry AR, Al-Sehemi AG (2017) Exploring the possible existence of oxygen-bridged planarized 4-aminopyridine: promising structure, charge transport and nonlinear optical properties. J Mater Chem C 5(28):7102–7109.  https://doi.org/10.1039/C7TC01482A CrossRefGoogle Scholar
  34. 34.
    Rottwitt K, Tidemand-Lichtenberg P (2014) Nonlinear optics: principles and applications, vol 3. CRC PressGoogle Scholar
  35. 35.
    Matsuzawa N, Dixon DA (1992) Semiempirical calculations of hyperpolarizabilities for donor-acceptor molecules: comparison to experiment. J Phys Chem 96(15):6232–6241CrossRefGoogle Scholar
  36. 36.
    Castro AN, Almeida LR, Anjos MM, Oliveira GR, Napolitano HB, Valverde C, Baseia B (2016) Theoretical study on the third-order nonlinear optical properties and structural characterization of 3-acetyl-6-bromocoumarin. Chem Phys Lett 653:122–130CrossRefGoogle Scholar
  37. 37.
    Silva PSP, El Ouazzani H, Pranaitis M, Silva MR, Arranja CT, Sobral AJFN, Sahraoui B, Paixão JA (2014) Experimental and theoretical studies of the second-and third-order NLO properties of a semi-organic compound: 6-aminoquinolinium iodide monohydrate. Chem Phys 428:67–74CrossRefGoogle Scholar
  38. 38.
    Hatua K, Nandi PK (2012) Theoretical study of electronic structure and third-order optical properties of beryllium–hydrocarbon complexes. Comput Theor Chem 996:82–90CrossRefGoogle Scholar
  39. 39.
    Karakas A, Migalska-Zalas A, El Kouari Y, Gozutok A, Karakaya M, Touhtouh S (2013) Quantum chemical calculations and experimental studies of third-order nonlinear optical properties of conjugated TTF–quinones. Opt Mater 36(1):22–26CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Theoretical and Computational Laboratory, Department of ChemistryTsinghua UniversityBeijingPeople’s Republic of China
  2. 2.Department of ChemistryMohi-ud-Din Islamic UniversityNerian SharifPakistan
  3. 3.Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical EngineeringHenan Normal UniversityXinxiangChina
  4. 4.Department of Physics, College of ScienceKing Khalid UniversityAbhaSaudi Arabia
  5. 5.Department of ChemistryUniversity of Agriculture FaisalabadFaisalabadPakistan
  6. 6.Department of ChemistryCOMSATS UniversityAbbottabadPakistan

Personalised recommendations