Journal of Molecular Modeling

, 25:264 | Cite as

Theoretical UV-Vis spectra of tetracationic porphyrin: effects of environment on electronic spectral properties

  • Eduardo Diaz Suarez
  • Filipe Camargo Dalmatti Alves LimaEmail author
  • Patrícia Moura Dias
  • Vera R. L. Constantino
  • Helena Maria Petrilli
Original Paper


Electronic and spectroscopic properties of tetracationic 5,10,15,20-tetrakis(1-methyl-4-pyridyl)-21H,23H-porphyrin (TMPyP) were investigated in the framework of the density functional theory (DFT). Modeling of implicit solvent, charge effects, and medium acidity were performed and compared with experimental results. Various hybrid exchange correlation functionals in the Kohn-Sham Scheme of the DFT were employed and various porphyrin models were constructed, simulating different environmental conditions. Since porphyrins present several technological applications with a plethora of interacting systems and the optical spectra profiles are often used to characterize these macrocyclic compounds, the study performed here aims to stablish a correct description of the UV-Vis spectrum. These results allowed to reproduce, both qualitatively as well as quantitatively, the Soret band of the TMPyP.


DFT Porphyrin UV-Vis spectroscopy CAM-B3YLP 



The calculations used the computational resources provided by the HPC-USP/Rice agreement and the cluster funded by FAPESP. The authors also acknowledge the computational time provided by the CENAPAD/SP.

Funding information

The authors thank the financial support provided by the INCT-INEO, CNPq and FAPESP.

Supplementary material

894_2019_4149_MOESM1_ESM.docx (7.3 mb)
ESM 1 (DOCX 7432 kb)


  1. 1.
    Auwärter W, Écija D, Klappenberger F, Barth JV (2015) Porphyrins at interfaces. Nat Chem 7:105–120. CrossRefPubMedGoogle Scholar
  2. 2.
    Gouterman M, Wagnière GH, Snyder LC (1963) Spectra of porphyrins. J Mol Spectrosc 11:108–127. CrossRefGoogle Scholar
  3. 3.
    Takagi S, Eguchi M, Tryk D, Inoue H (2006) Porphyrin photochemistry in inorganic/organic hybrid materials: clays, layered semiconductors, nanotubes, and mesoporous materials. J Photochem Photobiol C: Photochem Rev 7:104–126. CrossRefGoogle Scholar
  4. 4.
    Alberti G, Constantino U (1996) Solid-state supramolecular chemistry: two- and three-dimensional inorganic networks1st edn. Pergamon, New YorkGoogle Scholar
  5. 5.
    Li C, Ly J, Lei B et al (2004) Data storage studies on nanowire transistors with self-assembled porphyrin molecules. J Phys Chem B 108:9646–9649. CrossRefGoogle Scholar
  6. 6.
    Rezaeifard A, Jafarpour M (2014) The catalytic efficiency of Fe-porphyrins supported on multi-walled carbon nanotubes in the heterogeneous oxidation of hydrocarbons and sulfides in water. Catal Sci Technol 4:1960. CrossRefGoogle Scholar
  7. 7.
    Qiao J, Liu Y, Hong F, Zhang J (2014) A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem Soc Rev 43:631–675. CrossRefPubMedGoogle Scholar
  8. 8.
    Duan X, Huang Y, Jiang S et al (2013) Real-time electrical detection of nitric oxide in biological systems with sub-nanomolar sensitivity. Nat Commun 4:2225. CrossRefPubMedGoogle Scholar
  9. 9.
    Tuffy B (2011) Porphyrin materials for organic light emitting diodes1st edn. LAP LAMBERT Academic Publishing, SaarbrückenGoogle Scholar
  10. 10.
    Ji L, Devaramani S, Mao X et al (2017) Behaviors of the interfacial consecutive multistep electron transfer controlled by varied transition metal ions in porphyrin cores. J Phys Chem B 121:9045–9051. CrossRefPubMedGoogle Scholar
  11. 11.
    Kuch W, Bernien M (2017) Controlling the magnetism of adsorbed metal–organic molecules. J Phys Condens Matter 29:023001. CrossRefPubMedGoogle Scholar
  12. 12.
    Bhandary S, Brena B, Panchmatia PM et al (2013) Manipulation of spin state of iron porphyrin by chemisorption on magnetic substrates. Phys Rev B 88:024401. CrossRefGoogle Scholar
  13. 13.
    Mohnani S, Bonifazi D (2010) Supramolecular architectures of porphyrins on surfaces: the structural evolution from 1D to 2D to 3D to devices. Coord Chem Rev 254:2342–2362. CrossRefGoogle Scholar
  14. 14.
    Gottfried JM (2015) Surface chemistry of porphyrins and phthalocyanines. Surf Sci Rep 70:259–379. CrossRefGoogle Scholar
  15. 15.
    Díaz C, Catalán-Toledo J, Flores ME et al (2017) Dispersion of the photosensitizer 5,10,15,20-tetrakis(4-sulfonatophenyl)-porphyrin by the amphiphilic polymer poly(vinylpirrolidone) in highly porous solid materials designed for photodynamic therapy. J Phys Chem B 121:7373–7381. CrossRefPubMedGoogle Scholar
  16. 16.
    Otsuki J (2010) STM studies on porphyrins. Coord Chem Rev 254:2311–2341. CrossRefGoogle Scholar
  17. 17.
    Huang H, Wong SL, Chen W, Wee ATS (2011) LT-STM studies on substrate-dependent self-assembly of small organic molecules. J Phys D Appl Phys 44:464005. CrossRefGoogle Scholar
  18. 18.
    Niu T, Li A (2013) Exploring single molecules by scanning probe microscopy: porphyrin and phthalocyanine. J Phys Chem Lett 4:4095–4102. CrossRefGoogle Scholar
  19. 19.
    Bedioui F (1995) Zeolite-encapsulated and clay-intercalated metal porphyrin, phthalocyanine and Schiff-base complexes as models for biomimetic oxidation catalysts: an overview. Coord Chem Rev 144:39–68. CrossRefGoogle Scholar
  20. 20.
    Thomas JK (1993) Physical aspects of photochemistry and radiation chemistry of molecules adsorbed on silica, .gamma.-alumina, zeolites, and clays. Chem Rev 93:301–320. CrossRefGoogle Scholar
  21. 21.
    Constantino VRL, Barbosa CAS, Bizeto MA, Dias PM (2000) Intercalation compounds involving inorganic layered structures. An Acad Bras Cienc 72:45–49CrossRefGoogle Scholar
  22. 22.
    Torres A, Amaya Suárez J, Remesal E et al (2018) Adsorption of prototypical asphaltenes on silica: first-principles DFT simulations including dispersion corrections. J Phys Chem B 122:618–624. CrossRefPubMedGoogle Scholar
  23. 23.
    Takagi S, Eguchi M, Tryk DA, Inoue H (2006) Light-harvesting energy transfer and subsequent electron transfer of cationic porphyrin complexes on clay surfaces. Langmuir 22:1406–1408. CrossRefPubMedGoogle Scholar
  24. 24.
    Ohtani Y, Shimada T, Takagi S (2015) Artificial light-harvesting system with energy migration functionality in a cationic dye/inorganic nanosheet complex. J Phys Chem C 119:18896–18902. CrossRefGoogle Scholar
  25. 25.
    Brennan BJ, Liddell PA, Moore TA et al (2013) Hole mobility in porphyrin- and porphyrin-fullerene electropolymers. J Phys Chem B 117:426–432. CrossRefPubMedGoogle Scholar
  26. 26.
    Hasobe T, Kamat PV, Absalom MA et al (2004) Supramolecular photovoltaic cells based on composite molecular nanoclusters: dendritic porphyrin and C 60 , porphyrin dimer and C 60 , and porphyrin−C 60 dyad. J Phys Chem B 108:12865–12872. CrossRefGoogle Scholar
  27. 27.
    Ohta K, Tokonami S, Takahashi K et al (2017) Probing charge carrier dynamics in porphyrin-based organic semiconductor thin films by time-resolved THz spectroscopy. J Phys Chem B 121:10157–10165. CrossRefPubMedGoogle Scholar
  28. 28.
    Aguzzi C, Cerezo P, Viseras C, Caramella C (2007) Use of clays as drug delivery systems: possibilities and limitations. Appl Clay Sci 36:22–36. CrossRefGoogle Scholar
  29. 29.
    Lin W, Hu Q, Jiang K et al (2016) A porphyrin-based metal–organic framework as a pH-responsive drug carrier. J Solid State Chem 237:307–312. CrossRefGoogle Scholar
  30. 30.
    Weiss C, Kobayashi H, Gouterman M (1965) Spectra of porphyrins. J Mol Spectrosc 16:415–450. CrossRefGoogle Scholar
  31. 31.
    Jaramillo P, Coutinho K, Cabral BJC, Canuto S (2011) Explicit solvent effects on the visible absorption spectrum of a photosynthetic pigment: chlorophyll-c2 in methanol. Chem Phys Lett 516:250–253. CrossRefGoogle Scholar
  32. 32.
    Kohn W, Sham LJJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138. CrossRefGoogle Scholar
  33. 33.
    Hohenberg P, Kohn W (1964) Inhomogeneous Electron gas. Phys Rev 136:B864–B871. CrossRefGoogle Scholar
  34. 34.
    Ullrich CA, Yang Z (2014) A brief compendium of time-dependent density functional theory. Braz J Phys 44:154–188. CrossRefGoogle Scholar
  35. 35.
    Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093. CrossRefPubMedGoogle Scholar
  36. 36.
    Improta R, Ferrante C, Bozio R, Barone V (2009) The polarizability in solution of tetra-phenyl-porphyrin derivatives in their excited electronic states: a PCM/TD-DFT study. Phys Chem Chem Phys 11:4664–4673. CrossRefPubMedGoogle Scholar
  37. 37.
    Mazzone G, Russo N, Sicilia E (2013) Theoretical investigation of the absorption spectra and singlet-triplet energy gap of positively charged tetraphenylporphyrins as potential photodynamic therapy photosensitizers. Can J Chem 91:902–906. CrossRefGoogle Scholar
  38. 38.
    Krawczyk P (2015) Time-dependent density functional theory calculations of the solvatochromism of some azo sulfonamide fluorochromes. J Mol Model 21:118. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    El Mahdy AM, Halim SA, Taha HO (2018) DFT and TD-DFT calculations of metallotetraphenylporphyrin and metallotetraphenylporphyrin fullerene complexes as potential dye sensitizers for solar cells. J Mol Struct 1160:415–427. CrossRefGoogle Scholar
  40. 40.
    De Simone BC, Mazzone G, Russo N et al (2018) Excitation energies, singlet–triplet energy gaps, spin–orbit matrix elements and heavy atom effects in BOIMPYs as possible photosensitizers for photodynamic therapy: a computational investigation. Phys Chem Chem Phys 20:2656–2661. CrossRefPubMedGoogle Scholar
  41. 41.
    Dulski M, Kempa M, Kozub P et al (2013) DFT/TD-DFT study of solvent effect as well the substituents influence on the different features of TPP derivatives for PDT application. Spectrochim Acta A Mol Biomol Spectrosc 104:315–327. CrossRefPubMedGoogle Scholar
  42. 42.
    Presselt M, Wojdyr M, Beenken WJD et al (2014) Steric and electronic contributions to the core reactivity of monoprotonated 5-phenylporphyrin: a DFT study. Chem Phys Lett 603:21–27. CrossRefGoogle Scholar
  43. 43.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. CrossRefGoogle Scholar
  44. 44.
    Fujimura T, Ramasamy E, Ishida Y et al (2016) Sequential energy and electron transfer in a three-component system aligned on a clay nanosheet. Phys Chem Chem Phys 18:5404–5411. CrossRefPubMedGoogle Scholar
  45. 45.
    Dias PM, De Faria DLA, Constantino VRL (2000) Spectroscopic studies on the interaction of tetramethylpyridylporphyrins and cationic clays. J Incl Phenom Macrocycl Chem 38:251–266. CrossRefGoogle Scholar
  46. 46.
    Dias PM, de Faria DLA, Leopoldo Constantino VR (2005) Clay-porphyrin systems: spectroscopic evidence of TMPyP protonation, non-planar distortion and meso substituent rotation. Clay Clay Miner 53:361–371. CrossRefGoogle Scholar
  47. 47.
    Ishida Y, Masui D, Shimada T et al (2012) The mechanism of the porphyrin spectral shift on inorganic nanosheets: the molecular flattening induced by the strong host–guest interaction due to the “size-matching rule”. J Phys Chem C 116:7879–7885. CrossRefGoogle Scholar
  48. 48.
    Chernia Z, Gill D (1999) Flattening of TMPyP adsorbed on laponite. Evidence in observed and calculated UV−Vis spectra. Langmuir 15:1625–1633. CrossRefGoogle Scholar
  49. 49.
    Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, Rev A.1. Gaussian, Inc, WallingfordGoogle Scholar
  50. 50.
    Breneman CM, Wiberg KB (1990) Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J Comput Chem 11:361–373. CrossRefGoogle Scholar
  51. 51.
    O’boyle NM, Tenderholt AL, Langner KM (2008) Cclib: a library for package-independent computational chemistry algorithms. J Comput Chem 29:839–845. CrossRefPubMedGoogle Scholar
  52. 52.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648. CrossRefGoogle Scholar
  53. 53.
    Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57. CrossRefGoogle Scholar
  54. 54.
    Cohen AJ, Handy NC (2001) Dynamic correlation. Mol Phys 99:607–615CrossRefGoogle Scholar
  55. 55.
    Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158. CrossRefGoogle Scholar
  56. 56.
    Becke AD (1993) A new mixing of Hartree-Fock and local density-functional theories. J Chem Phys 98:1372. CrossRefGoogle Scholar
  57. 57.
    Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620. CrossRefPubMedGoogle Scholar
  58. 58.
    Hertwig RH, Koch W (1997) On the parameterization of the local correlation functional. What is Becke-3-LYP? Chem Phys Lett 268:345–351. CrossRefGoogle Scholar
  59. 59.
    Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100. CrossRefGoogle Scholar
  60. 60.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. CrossRefPubMedGoogle Scholar
  61. 61.
    Perdew JP, Burke K, Ernzerhof M (1997) Erratum: generalized gradient approximation made simple (physical review letters (1996) 77 (3865)). Phys Rev Lett 78:1396CrossRefGoogle Scholar
  62. 62.
    Véras LMC, Cunha VRR, Lima FCDA et al (2013) Industrial scale isolation, structural and spectroscopic characterization of epiisopiloturine from Pilocarpus microphyllus Stapf leaves: a promising alkaloid against schistosomiasis. PLoS One 8:e66702. CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Portes MC, De Moraes J, Véras LMC et al (2016) Structural and spectroscopic characterization of epiisopiloturine-metal complexes, and anthelmintic activity vs. S mansoni. J Coord Chem 69:1663–1683. CrossRefGoogle Scholar
  64. 64.
    Lileev AS, Loginova DV, Lyashchenko AK (2007) Dielectric properties of aqueous hydrochloric acid solutions. Mendeleev Commun 17:364–365. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto de FísicaUniversidade de São PauloSão PauloBrazil
  2. 2.Instituto Federal de Educação Ciência e Tecnologia de São PauloMatãoBrazil
  3. 3.Fundacentro–Fundação Jorge Duprat Figueiredo de Segurança e Medicina do TrabalhoSão PauloBrazil
  4. 4.Departamento de Química Fundamental, Instituto de QuímicaUniversidade de São PauloSão PauloBrazil

Personalised recommendations