Advertisement

Journal of Molecular Modeling

, 25:273 | Cite as

Photoluminescence spectrum using DFT for double-walled carbon nanotubes with metallic constituents

  • A. P. Rodríguez VictoriaEmail author
  • A. D. Hernández de la Luz
  • Javier Martínez Juárez
  • Néstor David Espinosa-Torres
  • M. J. Robles-Águila
  • J. A. Luna López
  • G. Juárez-Díaz
Original Paper
  • 51 Downloads

Abstract

A theoretical study of the photoluminescence (PL) of double-walled carbon nanotubes (DWCNTs) using density functional theory (DFT) theory is reported in this work. The DWCNTs are of the armchair/armchair type and the structures studied have the arrangements (3,3)/(2,2), (8,8)/(4,4), (12,12)/(6,6), (16,16)/(8,8), (6,6)/(3,3), (10,10)/(5,5), (14,14)/(7,7), and (18,18)/(9,9). The PL spectra were obtained taking into account different DWCNT axial lengths ranging from 0.49 nm ≤ L ≤ 2.33 nm and their inner nanotube diameters in the range of 0.31 ≤ Dinn ≤ 1.22 nm; variations in their inter-wall separations were also considered, 0.18 ≤ Dinw ≤ 0.61 nm. Although the DWCNTs have metallic SWCNT constituents, such structures give rise to photoluminescence due mainly to both curvature effects and inter-wall interaction of the inner and outer nanotubes; these two factors modify significantly their electronic structure; besides, they also lead to these structures to exhibit the quenching effect. We realized calculations at a DFT level in which we used the generalized gradient approximation (GGA) to establish the molecular geometries and the fundamental state energies. To obtain the results of the PL spectra, the constituent SWCNTs were optimized in their ground state, with the hybrid function CAM-B3LYP, which is a mixed functional exchange and correlation, and the base set that was used is the 6-31G.

Keywords

Photoluminescence Double-walled carbon nanotube Quenching Chirality DFT 

Notes

Acknowledgments

The authors thankfully acknowledge the computer resources, technical advice, and support provided by the Laboratorio Nacional de Supercómputo del Sureste de México (LSN), a member of the CONACyT national laboratories, with project No. 201701064C. This work has also been partially supported by Project 100145955-VIEP2018. NDET is grateful for the Posdoctoral Scholarship provided by CONACYT with Project No.229741.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Muñoz-Sandoval E, Cortes-López AJ, Flores-Gómez B, Fajardo-Díaz JL, Sánchez-Salas R, López-Urías F (2017) Carbon sponge-type nanostructures based on coaxial nitrogen-doped multiwalled carbon nanotubes grown by CVD using benzylamine as precursor. Carbon 115:409–421.  https://doi.org/10.1016/j.carbon.2017.01.010 CrossRefGoogle Scholar
  2. 2.
    Sattler KD (2016) Carbon nanomaterials source book, volume 1. CRC Press, Boca RatonCrossRefGoogle Scholar
  3. 3.
    Huh JY, Hight Walker AR, Ro HW, Obrzut J, Mansfield E, Geiss R, Fagan JA (2010) Separation and characterization of double-wall carbon nanotube subpopulations. J Phys Chem C 114:11343–11351.  https://doi.org/10.1021/jp9110376 CrossRefGoogle Scholar
  4. 4.
    Kishi N, Kikuchi S, Ramesh P, Sugai T, Watanabe Y, Shinohara H (2006) Enhanced photoluminescence from very thin-wall carbon nanotubes synthesized by the zeolite-CCVD method. J Phys Chem B 110:24816–24821.  https://doi.org/10.1021/jp62709j CrossRefPubMedGoogle Scholar
  5. 5.
    Shen C, Brozen AH, Wang YH (2011) Double-walled carbon nanotubes: challenges and opportunities. Nanoscale 3:503–518.  https://doi.org/10.1039/c0nr00620c CrossRefPubMedGoogle Scholar
  6. 6.
    Thirumal V, Pandurangan A, Jayavel R, Krishnamoorthi SR, Llangovan R (2016) Synthesis of nitrogen doped coiled double walled carbon nanotubes by chemical vapor deposition method for supercapacitor applications. Curr Appl Phys 16:816–825.  https://doi.org/10.1016/j.cap.2016.04.08 CrossRefGoogle Scholar
  7. 7.
    Lu J, Yin S, Peng LM, Sun ZZ, Wang XR (2007) Proximity and anomalous field-effect characteristics in double-wall carbon nanotubes. Appl Phys Lett 90:052109.  https://doi.org/10.1063/1.2435927 CrossRefGoogle Scholar
  8. 8.
    Nie C, Galibert A-M, Soula B, Datas L, Jeremy S, Flahaut E, Monthioux M (2017) The unexpected complexity of filling double-wall carbon nanotubes with nickel (and iodine) 1-D nanocrystals. IEEE Trans Nanotechnol 16(5):759–766.  https://doi.org/10.1109/TNANO.2017.2686434 CrossRefGoogle Scholar
  9. 9.
    Yang S, Parks AN, Saba SA, Ferguson PL, Liu J (2011) Photoluminescence from inner walls in double-walled carbon nanotubes: some do, some do not. Nano Lett 11:4405–4410.  https://doi.org/10.1021/nl2025745 CrossRefPubMedGoogle Scholar
  10. 10.
    Shimamoto D, Muramatsu H, Hayashi T, Kim YA, Endo M, Park JS, Saito R, Terrones M, Dresselhaus MS (2009) Strong and stable photoluminescence from the semiconducting inner tubes within inner double walled carbon nanotubes. Appl Phys Lett 94:083106.  https://doi.org/10.1063/1.3085966 CrossRefGoogle Scholar
  11. 11.
    Muramatsu H, Hayashi T, Kim YA, Shimamoto D, Endo M, Meunier V, Sumpter BG, Terrones M, Dresslhaus MS (2009) Bright photoluminescence from the inner tubes of “peapod”-derived double-walled carbon nanotubes. Small 5(23):2678–2682.  https://doi.org/10.1002/small.200901305 CrossRefPubMedGoogle Scholar
  12. 12.
    Okazaki T, Bandow S, Tamura G, Fujita Y, Iakoubovskii K, Kazaoui S, Minami N, Saito T, Suenaga K, Iijima S (2006) Photoluminescence quenching in peapod-derived double-walled carbon nanotubes. Phys Rev B 74:153404.  https://doi.org/10.1103/PhysRevB.74.153404 CrossRefGoogle Scholar
  13. 13.
    Koyama T, Asada Y, Hikosaka N, Miyata Y, Shinohara H, Nakamura A (2011) Ultrafast exciton energy transfer between nanoscale coaxial cylinders: intertube transfer and luminescence quenching in double-walled carbon nanotubes. ACS Nano 5(7):5881–5887.  https://doi.org/10.1021/nn201661q CrossRefPubMedGoogle Scholar
  14. 14.
    Kishi N, Kikuchi S, Ramesh P, Sugai T, Watanabe Y, Shinohara H (2006) Enhanced photoluminescence from very thin double-wall carbon nanotubes synthesized by the zeolite-CCVD method. J Phys Chem B 110(49):24816–24821.  https://doi.org/10.1021/jp062709j CrossRefPubMedGoogle Scholar
  15. 15.
    Iakoubovskii K, Minami N, Ueno T, Kazaoui S, Kataura H (2008) Optical characterization of double wall carbon nanotubes: evidence for inner tube shielding. J Phys Chem C 112(30):11194–11198.  https://doi.org/10.1021/jp8018414 CrossRefGoogle Scholar
  16. 16.
    Tsyboulski DA, Hou Y, Fakhri N, Ghosh S, Zhang R, Bachilo SM, Pasquali M, Chen L, Liu J, Weisman RB (2009) Do inner shells of double-walled carbon nanotubes fluoresce. Nano Lett 9(9):3282–3289.  https://doi.org/10.1021/nl901550r CrossRefPubMedGoogle Scholar
  17. 17.
    Levshov DI, Parret R, Tran H-N, Michel T, Cao TT, Nguyen VC, Arenal R, Popov VN, Rochal SB, Sauvajol J-L, Zahab A-A, Paillet M (2017) Photoluminescence from an individual double-walled carbon nanotube. Phys Rev B 96:195410.  https://doi.org/10.1103/PhysRevB.96.195410 CrossRefGoogle Scholar
  18. 18.
    Tison Y, Giusca CE, Stolojan V, Hayashi Y, Ravi S, Silva P (2008) The inner shell influence on the electronic structure of double-walled carbon nanotubes. Adv Mater 20:189–194.  https://doi.org/10.1002/adma.200700399 CrossRefGoogle Scholar
  19. 19.
    Zhang Y, Zhou L, Zhao S, Wang W, Wang E, Liang W (2014) Electronic transport properties of inner and outer shells in near ohmic-contacted doubled-walled carbon nanotube transistors. J Appl Phys 115:224503.  https://doi.org/10.1063/1.4882995 CrossRefGoogle Scholar
  20. 20.
    Zhao S, Kitagawa T, Miyauchi Y, Matsuda K, Shinohara H, Kitura R (2014) Rayleigh scattering studies on inter-layer interactions in structure-defined individual double-wall carbon nanotubes. Nano Res 7(10):1548–1155CrossRefGoogle Scholar
  21. 21.
    Song W, Ni M, Lu J, Gao Z, Nagase S, Yu D, Ye H, Zhang X (2005) Electronic structures of semiconducting double-walled carbon nanotubes: important effect of interlayer interaction. Chem Phys Lett 414:429–433.  https://doi.org/10.1016/j.cplett.2005.08.085 CrossRefGoogle Scholar
  22. 22.
    Okada S, Oshiyama A (2003) Curvature-induced metallization of double-walled semiconducting zigzag carbon nanotubes. Phys Rev Lett 9(23):216801-1-4.  https://doi.org/10.1103/PhysRevLett.91.216801 CrossRefGoogle Scholar
  23. 23.
    Zólyomi V, Rusznyák Á, Kürti J, Gali Á, Simon F, Kuzmany H, Szabados Á, Surj PR (2006) Semiconductor to metal transition of double walled carbon nanotubes induced by inter-shell interaction. Phys Status Solidi 243(13):3476–3479.  https://doi.org/10.1002/pssb.200669161 CrossRefGoogle Scholar
  24. 24.
    Dirac PAM (1930) Note on exchange phenomena. Proc Cambridge Phil Soc 26:376.  https://doi.org/10.1017/S0305004100016108 CrossRefGoogle Scholar
  25. 25.
    Car R, Parinello M (1985) Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett 55:2471.  https://doi.org/10.1103/PhysRevLett.55.2471 CrossRefPubMedGoogle Scholar
  26. 26.
    Pederson MR, Jackson KA (1990) Variational mesh for quantum-mechanical simulations. Phys Rev B 41:7453.  https://doi.org/10.1103/PhysRevB.41.7453 CrossRefGoogle Scholar
  27. 27.
    Sankey OF, Niklewski DJ (1989) Ab initio multicenter tight-binding model for molecular-dynamics simulations and other applications in covalent systems. Phys Rev B 40:3979.  https://doi.org/10.1103/PhysRevB.40.3979 CrossRefGoogle Scholar
  28. 28.
    Drabold DA, Fedders PA, Stumm P (1994) Theory of diamond like amorphous carbon. Phys Rev B 49:16 415.  https://doi.org/10.1103/PhysRevB.49.16415 CrossRefGoogle Scholar
  29. 29.
    Blase X, Duchemin I, Jacquemin y D (2018). Chem Soc Rev 47:1022CrossRefGoogle Scholar
  30. 30.
    Dass D, Prasher R, Vaid R (2012) Analytical study of unit cell and molecular structures of singles walled carbon nanotubes. ISSN 2, 2250-3005(5)Google Scholar
  31. 31.
    Hamada N, Sawada S-i (1992) Atsushi Oshiyama. New one-dimensional conductors: graphitic microtubules. Phys Rev Lett 68:1579–1581.  https://doi.org/10.1103/PhysRevLett.68.1579 CrossRefPubMedGoogle Scholar
  32. 32.
    Ahmadi A, Shokri AA, Elahi SM (2016) Optical transition of zig-zag nanotubes under intrinsic curvature effect. Silicon 8:217–224.  https://doi.org/10.1007/s12633-014-9244-9 CrossRefGoogle Scholar
  33. 33.
    Liang S-D (2004) Intrinsic properties of electronic structure in commensurate double-wall carbon nanotubes. Phys B 352:305–311.  https://doi.org/10.1016/j.physb.2004.08.02 CrossRefGoogle Scholar
  34. 34.
    Levshov D, Than TX, Arenal R, Popov VN, Parret R, Paillet M, Jourdain V, Zahab AA, Michel T, Yuzyuk YI, Sauvajol JL (2011) Experimental evidence of a mechanical coupling between layers in and individual double-walled carbon nanotube. Nano Lett 11:4800–4804.  https://doi.org/10.1021/nl2026234 CrossRefPubMedGoogle Scholar
  35. 35.
    Hertel T, Hagen A, Talaleev V, Arnold K, Hernnrich F, Kappes M, Rosental S, Mc Bride J, Ulbricht H, Flahaut E (2005) Spectroscopy of single- and double-wall carbon nanotubes in different environments. Nano Lett 5(3):511–514.  https://doi.org/10.1021/nl050069a CrossRefPubMedGoogle Scholar
  36. 36.
    Naumov AV, Bachilo SM, Tsyboulski DA, Weisman RB (2008) Electric field quenching of carbon nanotube photoluminescence. Nano Lett 8(5):1527–1531.  https://doi.org/10.1021/nl0800974 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • A. P. Rodríguez Victoria
    • 1
    Email author
  • A. D. Hernández de la Luz
    • 1
  • Javier Martínez Juárez
    • 1
  • Néstor David Espinosa-Torres
    • 2
  • M. J. Robles-Águila
    • 1
  • J. A. Luna López
    • 1
  • G. Juárez-Díaz
    • 3
  1. 1.Centro de Investigaciones en Dispositivos Semiconductores (CIDS) del ICUAPBenemérita Universidad Autónoma de PueblaPueblaMexico
  2. 2.Instituto de Energías Renovables (IER-UNAM)TemixcoMexico
  3. 3.Facultad de Ciencias de la ComputaciónBenemérita Universidad Autónoma de PueblaPueblaMexico

Personalised recommendations