Advertisement

Journal of Molecular Modeling

, 25:261 | Cite as

Theoretical study on reaction mechanism of synthesis of iridium complexes having cyclometalated acyclic diaminocarbene ancillary ligands

  • Xinghui ZhangEmail author
  • Xi Wu
  • Yun Lei
Original Paper
  • 44 Downloads

Abstract

DFT calculations at the M06-2X level were performed to explore the reaction mechanism for the synthesis of the new cyclometalated iridium(III) complexes with acyclic diaminocarbene ancillary ligands. The solvent effects of the reaction systems have been considered by a single-point energy calculation using the SMD model in the experimental conditions of CH2Cl2 solvent. The calculated results show that the reaction consists of two main steps: the first step is the hydrogen transfer between the two N atoms, and the next step is the closed-loop process of the Ir atom and the aromatic ring ortho to release the HCl molecule. The reaction has a relatively low activation free energy of 17.1–23.2 kcal mol−1, indicating that it is easy to occur under the experimental conditions of Na et al. At the same time, it was found that the aryl para-CF3 substituent has higher reactivity than the corresponding reactant of the NO2 substituent.

Keywords

Iridium(III) complexes Acyclic diaminocarbene Orthometalation M06-2X 

Notes

Acknowledgments

We are grateful to the reviewers for their invaluable suggestions.

Funding information

This work was supported by the Outstanding Youth Research Program of Lanzhou University of Arts and Sciences (2018JCQN008).

References

  1. 1.
    Baldo MA, O’Brien DF, You Y, Shoustikov A, Sibley S, Thompson ME, Forrest SR (1998) Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395:151–154CrossRefGoogle Scholar
  2. 2.
    Nazeeruddin MK, Humphry-Baker R, Berner D, Rivier S, Zuppiroli L, Graetzel M (2003) Highly phosphorescence iridium complexes and their application in organic light-emitting devices. J Am Chem Soc 125:8790–8797CrossRefGoogle Scholar
  3. 3.
    Tamayo AB, Garon S, Sajoto T, Djurovich PI, Tsyba IM, Bau R, Thompson ME (2005) Cationic bis-cyclometalated iridium(III) diimine complexes and their use in efficient blue, green, and red electroluminescent devices. Inorg Chem 44:8723–8732CrossRefGoogle Scholar
  4. 4.
    Lowry MS, Goldsmith JI, Slinker JD, Rohl R, Pascal RA, Malliaras GG, Bernhard S (2005) Single-layer electroluminescent devices and photoinduced hydrogen production from an ionic iridium(III) complex. Chem Mater 17:5712–5719CrossRefGoogle Scholar
  5. 5.
    Lo KKW, Ng DCM, Chung CK (2001) First examples of luminescent cyclometalated iridium (III) complexes as labeling reagents for biological substrates. Organometallics 20:4999–5001CrossRefGoogle Scholar
  6. 6.
    Zhao Q, Yu M, Shi L, Liu S, Li C, Shi M, Zhou Z, Huang C, Li F (2010) Cationic iridium(III) complexes with tunable emission color as phosphorescent dyes for live cell imaging. Organometallics 29:1085–1091CrossRefGoogle Scholar
  7. 7.
    Gao R, Ho DG, Hernandez B, Selke M, Murphy D, Djurovich PI, Thompson ME (2002) Bis-cyclometalated Ir(III) complexes as efficient singlet oxygen sensitizers. J Am Chem Soc 124:14828–14829CrossRefGoogle Scholar
  8. 8.
    Zysman-Colman E (2017) Iridium (III) in optoelectronic and photonics applications. Wiley, ChichesterCrossRefGoogle Scholar
  9. 9.
    Lowry MS, Hudson WR, Pascal RA, Bernhard S (2004) Accelerated luminophore discovery through combinatorial synthesis. J Am Chem Soc 126:14129–14135CrossRefGoogle Scholar
  10. 10.
    Curtin PN, Tinker LL, Burgess CM, Cline ED, Bernhard S (2009) Structure−activity correlations among iridium(III) photosensitizers in a robust water-reducing system. Inorg Chem 48:10498–10506CrossRefGoogle Scholar
  11. 11.
    You Y, Park SY (2005) Inter-ligand energy transfer and related emission change in the cyclometalated heteroleptic iridium complex: facile and efficient color tuning over the whole visible range by the ancillary ligand structure. J Am Chem Soc 127:12438–12439CrossRefGoogle Scholar
  12. 12.
    de Fremont P, Marion N, Nolan SP (2009) Carbenes: synthesis, properties, and organometallic chemistry. Coord Chem Rev 253:862–892CrossRefGoogle Scholar
  13. 13.
    Hahn FE, Jahnke MC (2008) Heterocyclic carbenes: synthesis and coordination chemistry. Angew Chem Int Ed 47:3122–3172CrossRefGoogle Scholar
  14. 14.
    Herrmann WA (2002) N-heterocyclic carbenes: a new concept in organometallic catalysis. Angew Chem Int Ed 41:1290–1309CrossRefGoogle Scholar
  15. 15.
    Díez-Gonzalez S, Marion N, Nolan SP (2009) N-heterocyclic carbenes in late transition metal catalysis. Chem Rev 109:3612–3676CrossRefGoogle Scholar
  16. 16.
    Lee J, Chen HF, Batagoda T, Coburn C, Djurovich PI, Thompson ME, Forrest SR (2016) Deep blue phosphorescent organic light-emitting diodes with very high brightness and efficiency. Nat Mater 15:92–98CrossRefGoogle Scholar
  17. 17.
    Haneder S, Da Como E, Feldmann J, Lupton JM, Lennartz C, Erk P, Fuchs E, Molt O, Munster I, Schildknecht C, Wagenblast G (2008) Controlling the radiative rate of deep-blue electrophosphorescent organometallic complexes by singlet-triplet gap engineering. Adv Mater 20:3325–3330CrossRefGoogle Scholar
  18. 18.
    Sajoto T, Djurovich PI, Tamayo A, Yousufuddin M, Bau R, Thompson ME, Holmes RJ, Forrest SR (2005) Blue and near-UV phosphorescence from iridium complexes with cyclometalated pyrazolyl or N-heterocyclic carbene ligands. Inorg Chem 44:7992–8003CrossRefGoogle Scholar
  19. 19.
    Darmawan N, Yang CH, Mauro M, Raynal M, Heun S, Pan J, Buchholz H, Braunstein P, De Cola L (2013) Efficient near-UV emitters based on cationic bis-pincer iridium(III) carbene complexes. Inorg Chem 52:10756–10765CrossRefGoogle Scholar
  20. 20.
    Yang CH, Beltran J, Lemaur V, Cornil J, Hartmann D, Sarfert W, Frohlich R, Bizzarri C, De Cola L (2010) Iridium metal complexes containing N-heterocyclic carbene ligands for blue-light-emitting electrochemical cells. Inorg Chem 49:9891–9901CrossRefGoogle Scholar
  21. 21.
    Li TY, Liang X, Zhou L, Wu C, Zhang S, Liu X, Lu GZ, Xue LS, Zheng YX, Zuo JL (2015) N-heterocyclic carbenes: versatile second cyclometalated ligands for neutral iridium(III) heteroleptic complexes. Inorg Chem 54:161–173CrossRefGoogle Scholar
  22. 22.
    Vignolle J, Cattoen X, Bourissou D (2009) Stable noncyclic singlet carbenes. Chem Rev 109:3333–3384CrossRefGoogle Scholar
  23. 23.
    Herrmann WA, Ofele K, Preysing D, Herdtweck E (2003) Metal complexes of acyclic diaminocarbenes: links between N-heterocyclic carbene (NHC)- and Fischer-carbene complexes. J Organomet Chem 684:235–248CrossRefGoogle Scholar
  24. 24.
    Alder RW, Allen PR, Murray M, Orpen AG (1996) Bis(diisopropylamino)carbine. Angew Chem Int Ed Eng 35:1121–1123CrossRefGoogle Scholar
  25. 25.
    Slaughter LM (2012) Acyclic aminocarbenes in catalysis. ACS Catal 2:1802–1816CrossRefGoogle Scholar
  26. 26.
    Na H, Maity A, Morshed R, Teets TS (2017) Bis-cyclometalated iridium complexes with chelating dicarbene ancillary ligands. Organometallics 36:2965–2972CrossRefGoogle Scholar
  27. 27.
    Na H, Teets TS (2018) Highly luminescent cyclometalated iridium complexes generated by nucleophilic addition to coordinated isocyanides. J Am Chem Soc 140:6353–6360CrossRefGoogle Scholar
  28. 28.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision a.01. Gaussian, Inc., WallingfordGoogle Scholar
  29. 29.
    Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Accounts 120:215–241CrossRefGoogle Scholar
  30. 30.
    Fell JS, Martin BN, Houk KN (2017) Origins of the unfavorable activation and reaction energies of 1-azadiene heterocycles compared to 2-azadiene heterocycles in Diels–Alder reactions. J Organomet Chem 82:1912–1919CrossRefGoogle Scholar
  31. 31.
    Zhang XH, Li SS, Wei XL, Lei Y (2018) Computational study of Ru-catalyzed cycloisomerization of 2-alkynylanilides. J Mol Model 24:162CrossRefGoogle Scholar
  32. 32.
    Zhang XH (2019) Mechanistic study on the intramolecular oxa-[4+2] cycloaddition of substituted o-divinylbenzenes. J Mol Model 25:14CrossRefGoogle Scholar
  33. 33.
    Zhang XH, Geng ZY (2016) Mechanism of the gold(I)-catalyzed synthesis of imidazo-pyrimidines and imidazo-pyrazines via [3 + 2] dipolar cycloaddition: a DFT study. RSC Adv 6:62099–62108CrossRefGoogle Scholar
  34. 34.
    Zhang XH, Jiang LP, Li SS, Wang KT (2017) A theoretical study on platinum-catalyzed cycloisomerization of 2-ethynyl-1-ferrocenylbenzene. Comput Theor Chem 1115:56–62CrossRefGoogle Scholar
  35. 35.
    Zhao Q (2018) Substituent effect of the stacking interaction between carbon monoxide and benzene. J Mol Model 24:136CrossRefGoogle Scholar
  36. 36.
    Mendes RA, Silva BLS, Takeara R, Freitas RG, Brown A, Souza GLC (2018) Probing the antioxidant potential of phloretin and phlorizin through a computational investigation. J Mol Model 24:101CrossRefGoogle Scholar
  37. 37.
    Angulo B, Herrerías CI, Hormigón Z, Mayoral JA, Salvatella L (2018) Copper-catalyzed cyclopropanation reaction of but-2-ene. J Mol Model 24:195CrossRefGoogle Scholar
  38. 38.
    Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270–283CrossRefGoogle Scholar
  39. 39.
    Wadt WR, Hay PJ (1985) Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J Chem Phys 82:284–297CrossRefGoogle Scholar
  40. 40.
    Roy LE, Hay PJ, Martin RL (2008) Revised basis sets for the LANL effective core potentials. J Chem Theory Comput 4:1029–1031CrossRefGoogle Scholar
  41. 41.
    Rassolov VA, Ratner MA, Pople JA, Redfern PC, Curtiss LA (2001) 6-31G* basis set for third-row atoms. J Comput Chem 22:976–984CrossRefGoogle Scholar
  42. 42.
    Gonzalez C, Schlegel HB (1989) An improved algorithm for reaction path following. J Chem Phys 90:2154–2161CrossRefGoogle Scholar
  43. 43.
    Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemical EngineeringLanzhou University of Arts and ScienceLanzhouPeople’s Republic of China
  2. 2.School of Foreign LanguagesLanzhou University of Arts and ScienceLanzhouPeople’s Republic of China

Personalised recommendations