Advertisement

Journal of Molecular Modeling

, 25:279 | Cite as

Structure and bonding in triorganotin chlorides: a perspective from energy decomposition analysis

  • Marcus V. J. Rocha
  • Felipe S. Vilhena
  • Matheus R. M. Signorelli
  • José W. de M. Carneiro
  • Teodorico C. Ramalho
  • Luciano T. CostaEmail author
Original Paper
  • 52 Downloads

Abstract

The Sn–Cl chemical bond of four organotin halides (Me3SnCl, Et3SnCl, Bu3SnCl, and Ph3SnCl) was studied by using relativistic density functional theory in combination with a quantitative energy decomposition analysis to explain the formation of charged species. The σ orbital is the dominant contributor to the stabilization of the Sn–Cl bond, and the π-orbital interactions also have a significant contribution to the stabilization of Ph3Sn+ cation when the aromatic groups are bonded to the tin atom. The aromaticity of the phenyl groups delocalizes the positive charge, donating electrons to tin atom by conjugation. Although Me3SnCl and Ph3SnCl are constituted by groups which the size of the substituents is different, the interaction energies obtained with the energy decomposition analysis present similar values, which also occur with the thermodynamic parameters.

Graphical abstract

Organotin compounds have widely studied as a potential antitumoral agent. The mechanism in triorganotin compounds includes the formation of cation species, R3Sn+. This article studies the influence of the R groups on the rupture of Sn–Cl bond using the fragment analysis and quantitative energy decomposition analysis.

Keywords

Organotin compounds Energy decomposition analysis DFT 

Notes

Funding information

We thank CAPES, CNPq, and FAPERJ for financial support. This study was in part financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001

Supplementary material

894_2019_4144_MOESM1_ESM.docx (302 kb)
ESM 1 (DOCX 301 kb)

References

  1. 1.
    Davies AG, Gielen M, Pannell KH, Tiekink ERT (2008) Tin chemistry: fundamentals, frontiers, and applications. Chicheste, WilleyGoogle Scholar
  2. 2.
    Shariatinia Z, Asadi E, Yousefi M, Sohrabi M (2012) Novel organotin(IV)complexes of organophosphorus ligands: synthesis, spectroscopic, structural study and DFT calculations. J Organomet Chem 715:82–92Google Scholar
  3. 3.
    Bomfim Filho LFO, Oliveira MRL, Miranda LDL, Vidigal AEC, Guilardi S, Souza RAC, Elena J, Ardisson JD, Zambolim L, Rubinger MMM (2017) Syntheses, characterization and antifungal activity of novel dimethylbis(N-R-sulfonyldithiocarbimato)stannate(IV) complexes. J Mol Struct 1129:60–67Google Scholar
  4. 4.
    Zhang S, Wang W, Liu Q, Zheng X, Tian L (2016) Synthesis, crystal structure, and antibacterial activity of tricyclohexyltin salicylates. Main Group Met Chem 39(3–4):87–92Google Scholar
  5. 5.
    Hazra S, Paul A, Sharma G, Koch B, Silva MFCG, Pombeiro AJL (2016) Sulfonated Schiff base Sn(IV) complexes as potential anticancer agents. J Inorg Biochem 162:83–95PubMedGoogle Scholar
  6. 6.
    Girasolo MA, Tesoriere L, Casella G, Attanzio A, Capobianco ML, Sabatino P, Barone G, Rubino S, Bonsignore R (2017) A novel compound of triphenyltin(IV) with N-tert-butoxycarbonyl-l-ornithine causes cancer cell death by inducing a p53-dependent activation of the mitochondrial pathway of apoptosis. Inorg Chim Acta 456:1–8Google Scholar
  7. 7.
    Wang H, Hu L, Du W, Tian X, Zhang Q, Hu Z, Luo L, Zhou H, Wu J, Tian Y (2017) Two-photon active organotin(IV) carboxylate complexes for visualization of anticancer action. ACS Biomater Sci Eng 3(5):836–842Google Scholar
  8. 8.
    Sirajuddin M, Ali S (2016) Organotin(IV) carboxylates as promising potential drug candidates in the field of cancer chemotherapy. Curr Pharm Des 22(44):6665–6681PubMedGoogle Scholar
  9. 9.
    Shah M, Ali S, Tariq M, Khalid N, Ahmad F, Khan MA (2014) Catalytic conversion of jojoba oil into biodiesel by organotin catalysts, spectroscopic and chromatographic characterization. Fuel 118:392–397Google Scholar
  10. 10.
    Sirajuddin M, Tariq M, Ali S (2015) Organotin(IV) carboxylates as an effective catalyst for the conversion of corn oil into biodiesel. J Organomet Chem 779:30–38Google Scholar
  11. 11.
    Iqbal M, Ali S, Haider A, Khalid N (2017) Therapeutic properties of organotin complexes with reference to their structural and environmental features. Rev Inorg Chem 37(2):51–70Google Scholar
  12. 12.
    Hadjikakou SK, Hadjiliadis N (2009) Antiproliferative and anti-tumor activity of organotin compounds. Coord Chem Rev 253(1–2):235–249Google Scholar
  13. 13.
    Pellerito C, Nagy L, Pellerito L, Szorcsik A (2006) Biological activity studies on organotin(IV)n+ complexes and parent compounds. J Organomet Chem 691(8):1733–1747Google Scholar
  14. 14.
    von Ballmoos C, Brunner J, Dimroth P (2004) The ion channel of F-ATP synthase is the target of toxic organotin compounds. PNAS 101(31):11239–11,244Google Scholar
  15. 15.
    Ramalho TC, Rocha MVJ, Cunha EFF, Oliveira LCA, Carvalho KTG (2010) Understanding the molecular behavior of organotin compounds to design their effective use as agrochemicals: exploration via quantum chemistry and experiments. J Biomol Struct Dyn 28(2):227–238PubMedGoogle Scholar
  16. 16.
    Cruz A, Oliveira V, Baptista I, Almeida CA, Suzuki S, Mendo S (2012) Effect of tributyltin (TBT) in the metabolic activity of TBT-resistant and sensitive estuarine bacteria. Environ Toxicol 27(1):11–17PubMedGoogle Scholar
  17. 17.
    Rocha MVJ, Ramalho TC, Caetano MS, Cunha EFF (2013) Construction and assessment of reaction models between F1F0-synthase and organotin compounds: molecular docking and quantum calculations. J Biomol Struct Dyn 31(10):1175–1181PubMedGoogle Scholar
  18. 18.
    Sirajuddin M, Ali S, McKee V, Sohail M, Pasha H (2014) Potentially bioactive organotin(IV) compounds: synthesis, characterization, in vitro bioactivities and interaction with SS-DNA. Eur J Med Chem 84:343–363PubMedGoogle Scholar
  19. 19.
    Gomez-Ruiz S, Zizak Z, Kaluderovic GN (2012) A triphenyltin(IV) nicotinate derivative – synthesis and toxicity towards different tumour and normal cell lines. Lett Drug Des Discov 9(8):737–741Google Scholar
  20. 20.
    Ellahioui Y, Prashar S, Gomez-Ruiz S (2017) Anticancer applications and recent investigations of metallodrugs based on gallium, tin and titanium. Inorganics 5(1):4Google Scholar
  21. 21.
    Ritter SK (2016) The art of chemical bond. ACS Cent Sci 2(11):769–772PubMedPubMedCentralGoogle Scholar
  22. 22.
    Radius U, Bickelhaupt FM, Ehlers AW, Hoffmann R, Barends EJ (1998) Is CO a special ligand in organometallic chemistry? Theoretical investigation of AB, Fe(CO)4AB, and Fe(AB)5 (AB = N2, CO, BF, SiO). Inorg Chem 37(5):1080–1090Google Scholar
  23. 23.
    Belpassi L, Infante I, Tarantelli F, Visscher L (2008) The chemical bond between Au(I) and the nobleg. Comparative study of NgAuF and NgAu+ (Ng = Ar, Kr, Xe) by density functional and coupled cluster methods. J Am Chem Soc 130(3):1048–1060PubMedGoogle Scholar
  24. 24.
    Sharma B, Srivastava HK, Gayatri G, Sastry GN (2015) Energy decomposition analysis of cation–π, metal ion–lone pair, hydrogen bonded, charge-assisted hydrogen bonded, and π–π interactions. J Comput Chem 36(8):529–538PubMedGoogle Scholar
  25. 25.
    Rezabal E, Frison G (2015) Estimating π binding energy of N-heterocyclic carbenes: the role of polarization. J Comput Chem 36(8):564–572PubMedGoogle Scholar
  26. 26.
    Hamlin TA, Poater J, Fonseca Guerra C, Bickelhaupt FM (2017) B-DNA model systems in non-terran bio-solvents: implications for structure, stability and replication. Phys Chem Chem Phys 19(26):16969–16,978PubMedGoogle Scholar
  27. 27.
    Nitsch J, Wolters LP, Fonseca Guerra C, Bickelhaupt FM, Steffen A (2017) Enhanced π-back-donation as a way to higher coordination numbers in d10 [M(NHC)n] complexes: a DFT study. Chem Eur J 23(3):614–622PubMedGoogle Scholar
  28. 28.
    Shujah S, Ali S, Khalid N (2018) Synthesis, spectroscopic characterization, X-ray structure, DFT calculations, and antimicrobial studies of diorganotin (IV) complexes of monotopic oxygen nitrogen donor Schiff base. Chem Pap 72(4):903–919Google Scholar
  29. 29.
    Dias LC, de Lima GM, Pinheiro CB, Nascimento MAC, Bitzer RS (2017) Molecular and supramolecular properties of nitroaromatic thiosemicarbazones: synthesis, spectroscopy, X-ray structure elucidation and DFT calculations. J Mol Struct 1131:79–86Google Scholar
  30. 30.
    Pokharia S, Joshi R, Pokharia M, Yadav SK, Mishra H (2016) A density functional theory insight into the structure and reactivity of diphenyltin(IV) derivative of glycylphenylalanine. Main Group Met Chem 39(3–4):77–86Google Scholar
  31. 31.
    Jensen RP (2008) Bioinorganic chemistry modeled with the TPSSh density functional. Inorg Chem 47(22):10357–10,365PubMedGoogle Scholar
  32. 32.
    Sirikci G, Anem NA, Oztas SG (2015) Theoretical studies of organotin(IV) complexes derived from ONO-donor type schiff base ligands. J Mol Model 21(9):221PubMedGoogle Scholar
  33. 33.
    Levine DS, Head-Gordon M (2017) Energy decomposition analysis of single bonds within Kohn–Sham density functional theory. PNAS 114(48):12649–12656PubMedGoogle Scholar
  34. 34.
    Thirman J, Engelage E, Huber SM, Head-Gordon M (2018) Characterizing the interplay of Pauli repulsion, electrostatics, dispersion and charge transfer in halogen bonding with energy decomposition analysis. Phys Chem Chem Phys 20(2):905–915PubMedGoogle Scholar
  35. 35.
    Boughlala Z, Fonseca Guerra C, Bickelhaupt FM (2017) Alkali metal cation affinities of anionic main group-element hydrides across the periodic table. Chem Asian J 12(19):2604–2611PubMedGoogle Scholar
  36. 36.
    Poater J, Paauwe J, Pan S, Merino G, Fonseca Guerra C, Bickelhaupt FM (2017) Kekulene: structure, stability and nature of H•••H interactions in large PAHs. Mol Astrophys 8(19):19–26Google Scholar
  37. 37.
    Baus JA, Poater J, Bickelhaupt FM, Tacke R (2017) Silylene-induced reduction of [Mn2(CO)10]: formation of a five-coordinate silicon(IV) complex with an O-bound [(OC)4Mn=Mn(CO)4]2– ligand. Eur J Inorg Chem 2017(1):186–191Google Scholar
  38. 38.
    Zhao L, von Hopffgarten M, Aranda DM, Frenking G (2018) Energy decomposition analysis. WIREs Comput Mol Sci 8(3):e1345Google Scholar
  39. 39.
    Lu B, Zhang X, Meng L, Zeng Y (2016) The Pt (II)•••Cl interactions: nature and strength. Chem Sel 1(18):5698–5705Google Scholar
  40. 40.
    von Hopffgarten M, Frenking G (2012) Energy decomposition analysis. WIREs Comput Mol Sci 2(1):43–62Google Scholar
  41. 41.
    Neese F (2012) The ORCA program system. Wiley Interdiscip Rev. Comput Mol Sci 2(1):73–78Google Scholar
  42. 42.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785–789Google Scholar
  43. 43.
    Becke AD (1993) Density-functional thermochemistry. III The role of exact exchange. J Chem Phys 98(7):5648–5652Google Scholar
  44. 44.
    Tao JM, Perdew JP, Staroverov VN, Scuseria GE (2003) Climbing the density functional ladder: nonempirical meta–generalized gradient approximation designed for molecules and solids. Phys Rev Lett 91(14):146401–146,404PubMedGoogle Scholar
  45. 45.
    Pantazis DA, Chen X-Y, Landis CR, Neese F (2008) All-electron scalar relativistic basis sets for third-row transition metal atoms. J Chem Theory Comput 4(6):908–919PubMedGoogle Scholar
  46. 46.
    Roy LE, Hay J, Martin RL (2008) Revised basis sets for the LANL effective core potentials. J Chem Theory Comput 4(7):1029–1031PubMedGoogle Scholar
  47. 47.
    Whittleton SR, Boyd RJ, Grindley TB (2006) Evaluation of effective core potentials and basis sets for the prediction of the geometries of alkyltin halides. J Phys Chem A 110(17):5893–5896PubMedGoogle Scholar
  48. 48.
    Bickelhaupt FM, Baerends EJ (2000) In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 15. Wiley-VCH, New York, pp 1–86Google Scholar
  49. 49.
    Ziegler T, Rauk A (1977) On the calculation of bonding energies by the Hartree Fock Slater method. Theor Chim Acta 46(1):1–10Google Scholar
  50. 50.
    Ziegler T, Rauk A (1979) A theoretical study of the ethylene-metal bond in complexes between copper(1+), silver(1+), gold(1+), platinum(0) or platinum(2+) and ethylene, based on the Hartree-Fock-Slater transition-state method. Inorg Chem 18(6):1558–1565Google Scholar
  51. 51.
    Ziegler T, Rauk A (1979) Carbon monoxide, carbon monosulfide, molecular nitrogen, phosphorus trifluoride, and methyl isocyanide as .sigma. donors and .pi. acceptors. A theoretical study by the Hartree-Fock-Slater transition-state method. Inorg Chem 18(7):1755–1759Google Scholar
  52. 52.
    Fonseca Guerra C, Handgraaf J-W, Baerends EJ, Bickelhaupt FM (2004) Voronoi deformation density (VDD) charges: assessment of the Mulliken, Bader, Hirshfeld, Weinhold, and VDD methods for charge analysis. J Comput Chem 25(2):189–210PubMedGoogle Scholar
  53. 53.
    te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJA, Snijders JG, Ziegler T (2001) Chemistry with ADF. J Comput Chem 22(9):931–967Google Scholar
  54. 54.
    van Lenthe E, Baerends EJ (2003) Optimized Slater-type basis sets for the elements 1–118. J Comput Chem 24(9):1142–1156PubMedGoogle Scholar
  55. 55.
    van Lenthe E, Baerends EJ, Snijders JG (1993) Relativistic regular two-component Hamiltonians. J Chem Phys 99(6):4597–4610Google Scholar
  56. 56.
    Hossain MB, Lefferts JL, Molloy KC, Helm DVD, Zuckerman JJ (1979) The crystal and molecular structure of trimethyltin chloride at 135 K. A highly volatile organotin polymer. Inorg Chim Acta 36:L409–L410Google Scholar
  57. 57.
    Tse JS, Lee FL, Gabe EJ (1986) Room-temperature and low-temperature structure of triphenyltin chloride. Acta Cryst C42:1876–1878Google Scholar
  58. 58.
    Osmekhin S, Caló A, Kisand V, Nõmmiste E, Kotilainen H, Aksela H, Aksela S (2008) Fragmentation of molecular tributyltin chloride. Int J Mass Spectrom 273(1–2):48–52Google Scholar
  59. 59.
    Alencastro RB, Bonfim JAS, Filgueiras CAL, Howie RA, Wardell JL (2005) Evaluation of PM3 calculations applied to organotin compounds: crystal structure of [Ph2SnCl2 (1,10-phenanthroline-5,6-dione)]·2Me2CO. Appl Organomet Chem 19(4):479–487Google Scholar
  60. 60.
    Orenha RP, Rocha MVJ, Poater J, Galembeck SE, Bickelhaupt FM (2017) Nature of the Ru−NO coordination bond: Kohn–Sham molecular orbital and energy decomposition analysis. Chem Open 6(3):410–416Google Scholar
  61. 61.
    Foti C, Gianguzza A, Milea D, Sammartano S (2002) Hydrolysis and chemical speciation of (C2H5)2Sn2+, (C2H5)3Sn+ and (C3H7)3Sn+ in aqueous media simulating the major composition of natural waters. Appl Organomet Chem 16(1):34–43Google Scholar
  62. 62.
    Tobias RS, Yasuda M (1964) The origin of the isotope effect on the acid dissociation constants of aquo metal ions. J Phys Chem 68(7):1820–1828Google Scholar
  63. 63.
    Tobias RS, Farrer HN, Hughes MB, Nevett BA (1966) Hydrolysis of the aquo ions R3Sn+ and R2Sn+: steric effects on the dissociation of aquo acids. Inorg Chem 5(11):2052–2055Google Scholar
  64. 64.
    Tsangaris JM, Williams DR (1992) Tin in pharmacy and nutrition. Appl Organomet Chem 6(1):3–18Google Scholar
  65. 65.
    Frenking G, Wichmann K, Fröhlich N, Loschen C, Lein M, Frunzke J, Rayón VM (2003) Towards a rigorously defined quantum chemical analysis of the chemical bond in donor–acceptor complexes. Coord Chem Rev 238–239:55–82Google Scholar
  66. 66.
    Krapp A, Bickelhaupt FM, Frenking G (2006) Orbital overlap and chemical bonding. Chem Eur J 12(36):9196–9216PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Marcus V. J. Rocha
    • 1
    • 2
  • Felipe S. Vilhena
    • 1
  • Matheus R. M. Signorelli
    • 1
  • José W. de M. Carneiro
    • 1
  • Teodorico C. Ramalho
    • 2
  • Luciano T. Costa
    • 1
    Email author
  1. 1.Instituto de Química, Departamento de Físico-QuímicaUniversidade Federal Fluminense (UFF)NiteróiBrazil
  2. 2.Departamento de QuímicaUniversidade Federal de Lavras (UFLA)LavrasBrazil

Personalised recommendations