Advertisement

Computational insights into the mechanism of formaldehyde detection by luminescent covalent organic framework

  • Xuedan SongEmail author
  • Zhengyan Zhao
  • Duanhui Si
  • Xun Wang
  • Fengyi Zhou
  • Mengru Zhang
  • Yantao Shi
  • Ce Hao
Original Paper

Abstract

Luminescent covalent organic frameworks (COFs) as fluorescent sensor materials provide a distinct advantage over other materials. In this work, we investigated the hydrogen bonding between the luminescent COF Ph-An-COF and formaldehyde in its excited electronic state by using density functional theory and time-dependent density functional theory to determine whether this type of COF can be used for formaldehyde detection. Hydrogen bonding significantly changed the nature of the frontier orbital and the luminescent properties. Our study reveals that the hydrogen bonding was strengthened in the excited state and the fluorescence rate coefficient was significantly reduced, which is not favorable for the luminescence of this type of COF and would lead to a luminescence decrease or quenching phenomenon. Therefore, this type of luminescent COF can be used as a potential chemical sensor to detect formaldehyde. This work provides an insight into the design of luminescence covalent organic frameworks.

Keywords

Luminescent covalent organic framework Hydrogen bonding DFT TDDFT Formaldehyde detection 

Notes

Funding information

This work has been supported by the National Natural Science Foundation of China (Grant Nos. 21606040 and 21677029); the Fundamental Research Funds for the Central Universities (DUT18LK26); the Supercomputing Center of Dalian University of Technology; the National Supercomputing Center in LvLiang of China.

Supplementary material

894_2019_4134_MOESM1_ESM.docx (753 kb)
ESM 1 (DOCX 753 kb)

References

  1. 1.
    Cogliano VJ, Grosse Y, Baan RA, Straif K, Secretan MB, El GF (2005) Meeting report: summary of IARC monographs on formaldehyde, 2-butoxyethanol, and 1-tert-butoxy-2-propanol. Environ Health Perspect 113:1205–1208.  https://doi.org/10.1289/ehp.7542 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Salthammer T, Mentese S, Marutzky R (2010) Formaldehyde in the indoor environment. Chem Rev 110:2536–2572.  https://doi.org/10.1021/cr800399g CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Miksch RR, Anthon DW, Fanning LZ, Hollowell CD, Revzan K, Glanville J (1981) Modified pararosaniline method for the determination of formaldehyde in air. Anal Chem 53:2118–2123.  https://doi.org/10.1021/ac00236a040 CrossRefGoogle Scholar
  4. 4.
    Vignau-Laulhere J, Mocho P, Plaisance H, Raulin K, Desauziers V (2016) Assessment of diffusion parameters of new passive samplers using optical chemical sensor for on-site measuring formaldehyde in indoor air: experimental and numerical studies. Anal Bioanal Chem 408:2147–2157.  https://doi.org/10.1007/s00216-016-9317-2 CrossRefPubMedGoogle Scholar
  5. 5.
    Shustova NB, Cozzolino AF, Dincă M (2012) Conformational locking by design: relating strain energy with luminescence and stability in rigid metal-organic frameworks. J Am Chem Soc 134:19596–19599.  https://doi.org/10.1021/ja3103154 CrossRefPubMedGoogle Scholar
  6. 6.
    Yu Y, Zhang X, Ma J, Liu Q, Wang P, Dong Y (2014) Cu(I)-MOF: naked-eye colorimetric sensor for humidity and formaldehyde in single-crystal-to-single-crystal fashion. Chem Commun 50:1444–1446.  https://doi.org/10.1039/c3cc47723a CrossRefGoogle Scholar
  7. 7.
    Hu Z, Deibert BJ, Li J (2014) Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chem Soc Rev 43:5815–5840.  https://doi.org/10.1039/c4cs00010b CrossRefPubMedGoogle Scholar
  8. 8.
    Segura JL, Mancheño MJ, Zamora F (2016) Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications. Chem Soc Rev 45:5635–5671.  https://doi.org/10.1039/c5cs00878f CrossRefPubMedGoogle Scholar
  9. 9.
    Cote AP, Benin AI, Ockwig NW, O'Keeffe M, Matzger AJ, Yaghi OM (2005) Porous, crystalline, covalent organic frameworks. Science 310:1166–1170.  https://doi.org/10.1126/science.1120411 CrossRefPubMedGoogle Scholar
  10. 10.
    Feng X, Ding X, Jiang AD (2012) Covalent organic frameworks. Chem Soc Rev 41:6010–6022.  https://doi.org/10.1039/c2cs35157a CrossRefPubMedGoogle Scholar
  11. 11.
    Diercks CS, Yaghi OM (2017) The atom, the molecule, and the covalent organic framework. Science 355.  https://doi.org/10.1126/science.aal1585 CrossRefGoogle Scholar
  12. 12.
    Dalapati S, Jin E, Addicoat M, Heine T, Jiang D (2016) Highly emissive covalent organic frameworks. J Am Chem Soc 138:5797–5800.  https://doi.org/10.1021/jacs.6b02700 CrossRefPubMedGoogle Scholar
  13. 13.
    Ding S, Dong M, Wang Y, Chen Y, Wang H, Su C, Wang AW (2016) Thioether-based fluorescent covalent organic framework for selective detection and facile removal of mercury (II). J Am Chem Soc 138:3031–3037.  https://doi.org/10.1021/jacs.5b10754 CrossRefPubMedGoogle Scholar
  14. 14.
    Xie Y, Ding S, Liu J, Wang W, Zheng Q (2015) Triazatruxene based covalent organic framework and its quick-response fluorescence-on nature towards electron rich arenes. J Mater Chem C 3:10066–10069.  https://doi.org/10.1039/c3cc47723a CrossRefGoogle Scholar
  15. 15.
    Chandra S, Roy Chowdhury D, Addicoat M, Heine T, Paul A, Banerjee R (2017) Molecular level control of the capacitance of two-dimensional covalent organic frameworks: role of hydrogen bonding in energy storage materials. Chem Mater 29:2074–2080.  https://doi.org/10.1021/acs.chemmater.6b04178 CrossRefGoogle Scholar
  16. 16.
    Chengjiang Z, Gongke L, Zhuomin Z (2015) A hydrazone covalent organic polymer based micro-solid phase extraction for online analysis of trace Sudan dyes in food samples. J Chromatogr A 1419:1–9.  https://doi.org/10.1016/j.chroma.2015.09.059 CrossRefGoogle Scholar
  17. 17.
    Dalapati S, Jin S, Gao J, Xu Y, Nagai A, Jiang D (2013) An azine-linked covalent organic framework. J Am Chem Soc 135:17310–17313.  https://doi.org/10.1021/ja4103293 CrossRefPubMedGoogle Scholar
  18. 18.
    Zhao G, Han K (2012) Hydrogen bonding in the electronic excited state. Acc Chem Res 45:404–413.  https://doi.org/10.1021/ar200135h CrossRefPubMedGoogle Scholar
  19. 19.
    Zhao G, Han K, Lei Y, Dou Y (2007) Ultrafast excited-state dynamics of tetraphenylethylene studied by semiclassical simulation. J Chem Phys 127.  https://doi.org/10.1063/1.2768347 CrossRefGoogle Scholar
  20. 20.
    Zhou P, Hoffmann MR, Han K, He G (2014) New insights into the dual fluorescence of methyl salicylate: effects of intermolecular hydrogen bonding and solvation. J Phys Chem B 119:2125–2131.  https://doi.org/10.1021/jp501881j CrossRefPubMedGoogle Scholar
  21. 21.
    Zhao Z, Hao J, Song X, Ren S, Hao C (2015) A sensor for formaldehyde detection: luminescent metal-organic framework [Zn2(H2L)(2,20- bpy)2(H2O)]n. RSC Adv 5:49752–49758.  https://doi.org/10.1039/c5ra07373a CrossRefGoogle Scholar
  22. 22.
    Zhao G, Han K (2008) Site-specific solvation of the photoexcited protochlorophyllide a in methanol: formation of the hydrogen-bonded intermediate state induced by hydrogen-bond strengthening. Biophys J 94:38–46.  https://doi.org/10.1529/biophysj.107.113738 CrossRefPubMedGoogle Scholar
  23. 23.
    Huang N, Ding X, Kim J, Ihee H, Jiang D (2015) A photoresponsive smart covalent organic framework. Angew Chem Int Ed 54:8704–8707.  https://doi.org/10.1002/anie.201503902 CrossRefGoogle Scholar
  24. 24.
    Guerra CF, Snijders JG, Te Velde G, Baerends EJ (1998) Towards an order-N DFT method. Theor Chem Accounts 99:391–403.  https://doi.org/10.1007/s002140050353 CrossRefGoogle Scholar
  25. 25.
    Velde GT, Bickelhaupt FM, Baerends EJ, Guerra CF, Van Gisbergen SJA, Snijders JG, Ziegler T (2000) Chemistry with ADF. J Comput Chem 22:931–967.  https://doi.org/10.1002/jcc.1056 CrossRefGoogle Scholar
  26. 26.
    Falls Z, Zurek E, Autschbach J (2016) Computational prediction and analysis of the 27Al solid-state NMR spectrum of methylaluminoxane (MAO) at variable temperatures and field strengths. Phys Chem Chem Phys 18:24106–24118.  https://doi.org/10.1039/c6cp04260k CrossRefPubMedGoogle Scholar
  27. 27.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868.  https://doi.org/10.1103/PhysRevLett.77.3865 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456–1465.  https://doi.org/10.1002/jcc.21759 CrossRefPubMedGoogle Scholar
  29. 29.
    Van Lenthe E, Baerends EJ (2003) Optimized Slater-type basis sets for the elements 1-118. J Comput Chem 24:1142–1156.  https://doi.org/10.1002/jcc.10255 CrossRefPubMedGoogle Scholar
  30. 30.
    Wang F, Ziegler T, Lenthe EV, Gisbergen SV, Baerends EJ (2005) The calculation of excitation energies based on the relativistic two-component zeroth-order regular approximation and time-dependent density-functional with full use of symmetry. J Chem Phys 112:204103.  https://doi.org/10.1063/1.1899143 CrossRefGoogle Scholar
  31. 31.
    Kasha M (1950) Characteriztion of electronic transitions in complex molecules. Discuss Faraday Soc 9:14–19.  https://doi.org/10.1039/DF9500900014 CrossRefGoogle Scholar
  32. 32.
    Zhao G, Liu J, Zhou L, Han K (2007) Site-selective photoinduced electron transfer from alcoholic solvents to the chromophore facilitated by hydrogen bonding: a new fluorescence quenching mechanism. J Phys Chem B 111:8940–8945.  https://doi.org/10.1021/jp0734530 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemistry, Faculty of Chemical, Environmental and Biological Science and TechnologyDalian University of TechnologyDalianChina

Personalised recommendations