Advertisement

Reactivity of lignin subunits: the influence of dehydrogenation and formation of dimeric structures

  • Rosangela A. Maia
  • Gustavo Ventorim
  • Augusto Batagin-NetoEmail author
Original Paper
  • 41 Downloads

Abstract

Lignin is one of the most abundant natural materials around the world, accounting for about a quarter of the woody tissue. In general, it is well known that these highly branched aromatic bio-polymers are formed from the polymerization of p-coumaryl, coniferyl, and sinapyl alcohols; however, the connection between these structures are still not known in detail. In this work, we have employed electronic structure calculations to investigate local reactivities and details regarding the connectivity between the basic structures of lignin (unmodified mono and dilignols as well as dehydrogenated monolignols). Condensed-to-atoms Fukui indexes, local softness and hard and soft acids and bases principle were employed in the analyses. The results allow identifying reactive sites on the lignin subunits and access details on the synthesis and degradation of this bio-material. In particular, it is possible to identify a strong influence of the dehydrogenation and monomer dimerization on the monolignols reactivities, which activate the O–C4 and C5 positions.

Graphical Abstract

The local reactivities of lignin subunits were evaluated via DFT calculations.

Keywords

Electronic structure calculations Local reactivity Lignin Polymerization Density functional theory 

Notes

Funding information

The authors thank the Brazilian National Council for Scientific and Technological Development (CNPq) [grant numbers 448310/2014-7 and 420449/2018-3] and the Pro-Rectory of Research (PROPe) of the São Paulo State University (UNESP) for the financial support and student scholarship. This research was also supported by resources supplied by the Center for Scientific Computing (NCC/GridUNESP) of the São Paulo State University (UNESP).

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary material

894_2019_4130_MOESM1_ESM.pdf (1.3 mb)
(PDF 1.30 MB)

References

  1. 1.
    Boerjan W, Ralph J, Baucher M (2003) . Ann Rev Plant Biol 54(1):519.  https://doi.org/10.1146/annurev.arplant.54.031902.134938 CrossRefGoogle Scholar
  2. 2.
    Freudenberg K (1966) .. In: Lignin structure and reactions, advances in chemistry, vol 59. American Chemical Society, pp 1–21Google Scholar
  3. 3.
    Higuchi T (2006) . J Wood Sci 52(1):2.  https://doi.org/10.1007/s10086-005-0790-z CrossRefGoogle Scholar
  4. 4.
    Sjöström E (1993) Wood chemistry: fundamentals and applications. Gulf Professional PublishingGoogle Scholar
  5. 5.
    Chen H (2014) .. In: Biotechnology of lignocellulose. Springer, Netherlands, pp 25–71CrossRefGoogle Scholar
  6. 6.
    Pettersen R (1984) . In: Rowell R (ed) The chemistry of solid wood, vol 207. American Chemical Society, Washington, pp 57–126.  https://doi.org/10.1021/ba-1984-0207.ch002 Google Scholar
  7. 7.
    Rowell RM, Pettersen R, Tshabalala MA (2013) . In: Rowell R (ed) Handbook of wood chemistry and wood composites, Chapter 3. 2nd edn. CRC Press, Boca Raton, pp 33–72Google Scholar
  8. 8.
    Elder T, Fort RC Jr (2010) . In: Heitner C, Dimmel D, Schmidt JA (eds) Lignin and lignans: advances in chemistry. Taylor & Francis, Boca Raton, pp 321–348Google Scholar
  9. 9.
    Durbeej B, Wang YN, Eriksson L (2003) . In: Goos G, Hartmanis J, van Leeuwen J, Palma JMLM, Sousa AA, Dongarra J, Hernández V (eds) High performance computing for computational science — VECPAR 2002, vol 2565. Springer, Berlin, pp 137–165Google Scholar
  10. 10.
    Durbeej B, Eriksson L (2003) . Holzforschung 57(1):59.  https://doi.org/10.1515/HF.2003.009 CrossRefGoogle Scholar
  11. 11.
    Durbeej B, Eriksson L (2003) . Holzforschung 57(2):150.  https://doi.org/10.1515/HF.2003.024 CrossRefGoogle Scholar
  12. 12.
    Sangha AK, Petridis L, Smith JC, Ziebell A, Parks JM (2012) . Environ progress sustain energy 31(1):47.  https://doi.org/10.1002/ep.10628 CrossRefGoogle Scholar
  13. 13.
    Martinez C, Rivera JL, Herrera R, Rico JL, Flores N, Rutiaga JG, López P (2008) . J Mol Model 14(2):77.  https://doi.org/10.1007/s00894-007-0253-0 PubMedCrossRefGoogle Scholar
  14. 14.
    Martínez C, Sedano M, Mendoza J, Herrera R, Rutiaga JG, Lopez P (2009) . J Mol Graph Modell 28(2):196.  https://doi.org/10.1016/j.jmgm.2009.07.002 CrossRefGoogle Scholar
  15. 15.
    Shigematsu M, Kobayashi T, Taguchi H, Tanahashi M (2006) . J Wood Sci 52(2):128.  https://doi.org/10.1007/s10086-005-0737-4 CrossRefGoogle Scholar
  16. 16.
    Higuchi T (1985) .. In: Biosynthesis and biodegradation of wood components. Elsevier, pp 141–160.  https://doi.org/10.1016/B978-0-12-347880-1.50011-8 CrossRefGoogle Scholar
  17. 17.
    Batagin-Neto A, Oliveira EF, Graeff C, Lavarda F (2013) . Mol Simul 39(4):309.  https://doi.org/10.1080/08927022.2012.724174 CrossRefGoogle Scholar
  18. 18.
    Batagin-Neto A, Bronze-Uhle E, Graeff CFO (2015) . Phys Chem Chem Phys 17(11):7264.  https://doi.org/10.1039/C4CP05256K PubMedCrossRefGoogle Scholar
  19. 19.
    Schaftenaar G, Noordik JH (2000) . J Comput-Aided Mol Des 14(2):123.  https://doi.org/10.1023/A:1008193805436 PubMedCrossRefGoogle Scholar
  20. 20.
    Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) . J Comput Chem 25(9):1157.  https://doi.org/10.1002/jcc.20035 PubMedCrossRefGoogle Scholar
  21. 21.
    Allouche AR (2011) . J Comput Chem 32(1):174.  https://doi.org/10.1002/jcc.21600 PubMedCrossRefGoogle Scholar
  22. 22.
  23. 23.
    Stewart JJP (1990) . J Comput-Aided Mol Des 4(1):1.  https://doi.org/10.1007/BF00128336 PubMedCrossRefGoogle Scholar
  24. 24.
    Gans JD, Shalloway D (2001) . J Mol Graph Modell 19(6):557.  https://doi.org/10.1016/S1093-3263(01)00090-0 CrossRefGoogle Scholar
  25. 25.
  26. 26.
    Lee C, Yang W, Parr RG (1988) . Phys Rev B 37(2):785.  https://doi.org/10.1103/PhysRevB.37.785 CrossRefGoogle Scholar
  27. 27.
    Vosko SH, Wilk L, Nusair M (1980) . Can J Phys 58(8):1200.  https://doi.org/10.1139/p80-159 CrossRefGoogle Scholar
  28. 28.
    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) . J Phys Chem 98(45):11623.  https://doi.org/10.1021/j100096a001 CrossRefGoogle Scholar
  29. 29.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H (2009) Gaussian 09Google Scholar
  30. 30.
    Klamt A, Schüürmann G (1993) . J Chem Soc Perkin Trans 2(5):799.  https://doi.org/10.1039/P29930000799 CrossRefGoogle Scholar
  31. 31.
    Jensen F (2006) Introduction to computational chemistry, 2nd edn. Wiley, New YorkGoogle Scholar
  32. 32.
    Yang W, Mortier WJ (1986) . J Amer Chem Soc 108(19):5708.  https://doi.org/10.1021/ja00279a008 CrossRefGoogle Scholar
  33. 33.
    Zielinski F, Tognetti V, Joubert L (2012) . Chem Phys Lett 527:67.  https://doi.org/10.1016/j.cplett.2012.01.011 CrossRefGoogle Scholar
  34. 34.
    Chermette H (1999) . J Comput Chem 20(1):129CrossRefGoogle Scholar
  35. 35.
    Geerlings P, De Proft F, Langenaeker W (2003) . Chem Rev 103(5):1793.  https://doi.org/10.1021/cr990029p PubMedCrossRefGoogle Scholar
  36. 36.
    Domingo L, Ríos-Gutiérrez M, Pérez P (2016) . Molecules 21(6):748.  https://doi.org/10.3390/molecules21060748 PubMedCentralCrossRefGoogle Scholar
  37. 37.
    Lewars EG (2010) Computational chemistry: introduction to the theory and applications of molecular and quantum mechanics, 2nd edn. Springer, BerlinGoogle Scholar
  38. 38.
    Batagin-Neto A, Bronze-Uhle E, Vismara M, Assis A, Castro F, Geiger T, Lavarda F, Graeff C (2013) . Current Phys Chem 3(4):431.  https://doi.org/10.2174/18779468113036660026 CrossRefGoogle Scholar
  39. 39.
    Bronze-Uhle E, Batagin-Neto A, Lavarda F, Graeff CFO (2011) . J Appl Phys 110(7):073510.  https://doi.org/10.1063/1.3644946 CrossRefGoogle Scholar
  40. 40.
    Cesarino I, Simões RP, Lavarda F, Batagin-Neto A (2016) . Electrochim Acta 192:8.  https://doi.org/10.1016/j.electacta.2016.01.178 CrossRefGoogle Scholar
  41. 41.
    Martins LM, de Faria Vieira S, Baldacim GB, Bregadiolli BA, Caraschi JC, Batagin-Neto A, da Silva-Filho LC (2018) . Dye Pigment 148:81.  https://doi.org/10.1016/j.dyepig.2017.08.056 CrossRefGoogle Scholar
  42. 42.
    Mandú LO, Batagin-Neto A (2018) . J Mol Model 24(7):157.  https://doi.org/10.1007/s00894-018-3660-5 PubMedCrossRefGoogle Scholar
  43. 43.
    do Amaral Rodrigues J, de Araújo AR, Pitombeira NA, Plácido A, de Almeida MP, Veras LMC, Delerue-Matos C, Lima FCDA, Neto AB, de Paula RCM, Feitosa JPA, Eaton P, Leite JRSA, da Silva DA (2019) . Int J Biol Macromol 128:965.  https://doi.org/10.1016/j.ijbiomac.2019.01.206 PubMedCrossRefGoogle Scholar
  44. 44.
    De Proft F, Martin JM, Geerlings P (1996) . Chem Phys Lett 256(4-5):400.  https://doi.org/10.1016/0009-2614(96)00469-1 CrossRefGoogle Scholar
  45. 45.
    Thanikaivelan P, Padmanabhan J, Subramanian V, Ramasami T (2002) . Theor Chem Accounts: Theory, Comput Model (Theor Chim Acta) 107(6):326.  https://doi.org/10.1007/s00214-002-0352-z CrossRefGoogle Scholar
  46. 46.
    Roy RK, Pal S, Hirao K (1999) . J Chem Phys 110(17):8236.  https://doi.org/10.1063/1.478792 CrossRefGoogle Scholar
  47. 47.
    De Proft F, Van Alsenoy C, Peeters A, Langenaeker W, Geerlings P (2002) . J Comput Chem 23 (12):1198.  https://doi.org/10.1002/jcc.10067 PubMedCrossRefGoogle Scholar
  48. 48.
    Fleming I (2007) Frontier orbitals and organic chemical reactions, Reprint edn. Wiley, LondonGoogle Scholar
  49. 49.
    Eider T, McKee M, Worley S (1988) . Holzforschung 42(4):233.  https://doi.org/10.1515/hfsg.1988.42.4.233 CrossRefGoogle Scholar
  50. 50.
    Elder T, Worley S (1985) . Holzforschung 39(3):173.  https://doi.org/10.1515/hfsg.1985.39.3.173 CrossRefGoogle Scholar
  51. 51.
    Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) . Plant Physiology 153(3):895.  https://doi.org/10.1104/pp.110.155119 PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Dimmel D (2010) . In: Heitner C, Dimmel D, Schmidt JA (eds) Lignin and lignans: advances in chemistry. Taylor & Francis, Boca Raton, pp 1–10Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Campus of ItapevaSão Paulo State University (UNESP)ItapevaBrazil

Personalised recommendations