Supercell calculations of the geometry and lattice energy of α-glycine crystal

  • Neubi F. XavierJr
  • Antônio M. Da SilvaJr
  • Glauco Favilla BauerfeldtEmail author
Original Paper
Part of the following topical collections:
  1. QUITEL 2018 (44th Congress of Theoretical Chemists of Latin Expression)


Evidence about the presence of glycine in the interstellar medium (ISM) has been motivating studies aiming the understanding of the chemical behavior of this amino acid in such environment. Since glycine is expected to be predominantly found in the ISM in solid phase, this work focuses on the search for a theoretical methodology for obtaining a molecular cluster for α-glycine that provides a good description of the geometry of the unit cell and lattice energy. Calculations have been performed using the B3LYP-D3, PBE0-D3, and WB97X-D3 functionals, with def2-SVP, def2-TZVP, def2-TZVPP, and def2-QZVPP basis sets for two models: (a) the unit cell, containing 4 glycine units, and (b) the 2 × 1 × 2 expanded cell, with 16 glycine units. Corrections for the basis set superposition error have also been applied. No significant changes in geometries and lattice energy predictions from the different functionals and basis sets have been observed for each model. Nevertheless, results obtained for the larger molecular cluster are in better agreement with the experimental data. The best lattice energy prediction, obtained for the 2 × 1 × 2 supercell at the B3LYP-gCP-D3/def2-TZVPP level, is − 15.35 kcal mol−1, with a root mean square deviation of the predicted Cartesian coordinates of the inner molecules (with respect to the experimental α-glycine unit cell geometry) of 0.966 Å. This methodology is finally recommended for future studies of similar molecular cluster, and the predicted geometry is proposed for further studies aiming to describe glycine surface reactions in the ISM.


α-Glycine Interstellar medium Molecular crystal Lattice energy 



The authors would like to acknowledge Conselho Nacional de Desenvolvimento e Pesquisa (CNPq) for the scholarship and the LNCC–SINAPAD–Santos Dumont (sdumont2018/chamada1/paper182342) for the ongoing project. The authors also thank Prof. Chaudhuri for providing Cartesian coordinates of the optimized tetramer reported in Ref. 27.

Supplementary material

894_2019_4124_MOESM1_ESM.pdf (1 mb)
ESM 1 (PDF 1034 kb)


  1. 1.
    Elsila JE, Glavin DP, Dworkin JP (2009) Cometary glycine detected in samples returned by Stardust. Meteorit Planet Sci 44:1323–1330. CrossRefGoogle Scholar
  2. 2.
    Kvenvolden K, Lawless J, Pering K et al (1970) Evidence for extraterrestrial amino-acids and hydrocarbons in the Murchison meteorite. Nature 228:923–926. CrossRefPubMedGoogle Scholar
  3. 3.
    Largo L, Redondo P, Rayón VM et al (2010) The reaction between NH+ and CH3COOH: a possible process for the formation of glycine precursors in the interstellar medium. Astron Astrophys 516:A79. CrossRefGoogle Scholar
  4. 4.
    Nhlabatsi ZP, Bhasi P, Sitha S (2016) Possible interstellar formation of glycine from the reaction of CH2=NH, CO and H2O: catalysis by extra water molecules through the hydrogen relay transport. Phys Chem Chem Phys 18:375–381. CrossRefPubMedGoogle Scholar
  5. 5.
    Garrod RT (2013) A three-phase chemical model of hot cores: the formation of glycine. Astrophys J 765:60. CrossRefGoogle Scholar
  6. 6.
    Suzuki T, Majumdar L, Ohishi M et al (2018) An expanded gas-grain model for interstellar glycine. Astrophys J 863:51. CrossRefGoogle Scholar
  7. 7.
    Ehrenfreund P, Bernstein MP, Dworkin JP et al (2001) The photostability of amino acids in space. Astrophys J 550:L95–L99. CrossRefGoogle Scholar
  8. 8.
    Moggach SA, Marshall WG, Rogers DM, Parsons S (2015) How focussing on hydrogen bonding interactions in amino acids can miss the bigger picture: a high-pressure neutron powder diffraction study of ε-glycine. CrystEngComm 17:5315–5328. CrossRefGoogle Scholar
  9. 9.
    Bernstein MP, Dworkin JP, Sandford SA et al (2002) Racemic amino acids from the ultraviolet photolysis of interstellar ice analogues. Nature 416:401–403. CrossRefPubMedGoogle Scholar
  10. 10.
    Lee CW, Kang H (2015) UV photolysis of glycine on ice films: implication for photosynthesis and photodestruction of amino acids in interstellar medium. Bull Kor Chem Soc 36:784–788. CrossRefGoogle Scholar
  11. 11.
    Xu W, Zhu Q, Hu CT (2017) The structure of glycine dihydrate: implications for the crystallization of glycine from solution and its structure in outer space. Angew Chem Int Ed 56:2030–2034. CrossRefGoogle Scholar
  12. 12.
    Albrecht G, Corey RB (1939) The crystal structure of glycine. J Am Chem Soc 61:1087–1103. CrossRefGoogle Scholar
  13. 13.
    Iitaka Y (1961) The crystal structure of γ-glycine. Acta Crystallogr 14:1–10. CrossRefGoogle Scholar
  14. 14.
    Iitaka Y (1960) The crystal structure of β-glycine. Acta Crystallogr 13:35–45. CrossRefGoogle Scholar
  15. 15.
    Perlovich GL, Hansen LK, Bauer-Brandl A (2001) The polymorphism of glycine: thermochemical and structural aspects. J Therm Anal Calorim 66:699–715. CrossRefGoogle Scholar
  16. 16.
    Liu Z, Zhong L, Ying P et al (2008) Crystallization of metastable β glycine from gas phase via the sublimation of α or γ form in vacuum. Biophys Chem 132:18–22. CrossRefPubMedGoogle Scholar
  17. 17.
    Reilly AM, Tkatchenko A (2013) Seamless and accurate modeling of organic molecular materials. J Phys Chem Lett 4:1028–1033. CrossRefPubMedGoogle Scholar
  18. 18.
    Fang T, Li W, Gu F, Li S (2015) Accurate prediction of lattice energies and structures of molecular crystals with molecular quantum chemistry methods. J Chem Theory Comput 11:91–98. CrossRefPubMedGoogle Scholar
  19. 19.
    Feng S, Li T (2006) Predicting lattice energy of organic crystals by density functional theory with empirically corrected dispersion energy. J Chem Theory Comput 2:149–156. CrossRefPubMedGoogle Scholar
  20. 20.
    Buchholz HK, Stein M (2018) Accurate lattice energies of organic molecular crystals from periodic turbomole calculations. J Comput Chem 39:1335–1343. CrossRefPubMedGoogle Scholar
  21. 21.
    Otero-De-La-Roza A, Johnson ER (2012) A benchmark for non-covalent interactions in solids. J Chem Phys 137. CrossRefGoogle Scholar
  22. 22.
    Szeleszczuk Ł, Pisklak DM, Zielińska-Pisklak M (2018) Can we predict the structure and stability of molecular crystals under increased pressure? First-principles study of glycine phase transitions. J Comput Chem 39:1300–1306. CrossRefPubMedGoogle Scholar
  23. 23.
    Szeleszczuk Ł, Pisklak DM, Zielińska-Pisklak M (2018) Does the choice of the crystal structure influence the results of the periodic DFT calculations? A case of glycine alpha polymorph GIPAW NMR parameters computations. J Comput Chem 39:853–861. CrossRefPubMedGoogle Scholar
  24. 24.
    Singh MK (2014) Predicting lattice energy and structure of molecular crystals by first-principles method: role of dispersive interactions. J Cryst Growth 396:14–23. CrossRefGoogle Scholar
  25. 25.
    Sousa SF, Fernandes PA, Ramos MJ (2007) General performance of density functionals. J Phys Chem A 111:10439–10452. CrossRefPubMedGoogle Scholar
  26. 26.
    Dahlke EE, Truhlar DG (2005) Improved density functionals for water. J Phys Chem B 109:15677–15683. CrossRefPubMedGoogle Scholar
  27. 27.
    Chaudhuri P, Canuto S (2010) Many-body energy decomposition of hydrogen-bonded glycine clusters in gas-phase. Chem Phys Lett 491:86–90. CrossRefGoogle Scholar
  28. 28.
    Carvalho JR, Da Silva AM, Ghosh A, Chaudhuri P (2016) NMR properties of hydrogen-bonded glycine cluster in gas phase. J Mol Struct 1123:55–65. CrossRefGoogle Scholar
  29. 29.
    Chaudhari A, Sahu PK, Lee SL (2004) Many-body interaction in glycine-(water)3complex using density functional theory method. J Chem Phys 120:170–174. CrossRefPubMedGoogle Scholar
  30. 30.
    Rimola A, Sodupe M, Ugliengo P (2012) Computational study of interstellar glycine formation occurring at radical surfaces of water-ice dust particles. Astrophys J 754. CrossRefGoogle Scholar
  31. 31.
    Lattelais M, Risset O, Pilme J et al (2011) The survival of glycine in interstellar ices: a coupled investigation using NEXAFS experiments and theoretical calculations. Int J Quantum Chem 111:1163–1171. CrossRefGoogle Scholar
  32. 32.
    Pernet A, Pilm? J, Pauzat F, et al (2013) Possible survival of simple amino acids to X-ray irradiation in ice: the case of glycine. Astron Astrophys 552:1–8. CrossRefGoogle Scholar
  33. 33.
    Pilling S, Mendes LAV, Bordalo V et al (2013) The influence of crystallinity degree on the glycine decomposition induced by 1 mev proton bombardment in space analog conditions. Astrobiology 13:79–91. CrossRefPubMedGoogle Scholar
  34. 34.
    Neese F (2018) Software update: the ORCA program system, version 4.0. Wiley Interdiscip. Rev Comput Mol Sci 8:e1327. CrossRefGoogle Scholar
  35. 35.
    Neese F (2012) The ORCA program system. Wiley Interdiscip Rev Comput Mol Sci 2:73–78. CrossRefGoogle Scholar
  36. 36.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. CrossRefGoogle Scholar
  37. 37.
    Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58:1200–1211. CrossRefGoogle Scholar
  38. 38.
    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627. CrossRefGoogle Scholar
  39. 39.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. CrossRefGoogle Scholar
  40. 40.
    Perdew JP, Ernzerhof M, Burke K (1996) Rationale for mixing exact exchange with density functional approximations. J Chem Phys 105:9982–9985. CrossRefGoogle Scholar
  41. 41.
    Hoja J, Reilly AM, Tkatchenko A (2017) First-principles modeling of molecular crystals: structures and stabilities, temperature and pressure. Wiley Interdiscip Rev Comput Mol Sci 7. Google Scholar
  42. 42.
    Tkatchenko A, Distasio RA, Car R, Scheffler M (2012) Accurate and efficient method for many-body van der Waals interactions. Phys Rev Lett 108:1–5. CrossRefGoogle Scholar
  43. 43.
    Chai J-D, Head-Gordon M (2008) Systematic optimization of long-range corrected hybrid density functionals. J Chem Phys 128:084106. CrossRefPubMedGoogle Scholar
  44. 44.
    Aree T, Bürgi H-B (2012) Dynamics and thermodynamics of crystalline polymorphs: α-glycine, analysis of variable-temperature atomic displacement parameters. J Phys Chem A 116:8092–8099. CrossRefPubMedGoogle Scholar
  45. 45.
    Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566. CrossRefGoogle Scholar
  47. 47.
    Wells BH, Wilson S (1983) Van der Waals interaction potentials: many-body basis set superposition effects. Chem Phys Lett 101:429–434. CrossRefGoogle Scholar
  48. 48.
    White JC, Davidson ER (1990) An analysis of the hydrogen bond in ice. J Chem Phys 93:8029–8035. CrossRefGoogle Scholar
  49. 49.
    Mierzwicki K, Latajka Z (2003) Basis set superposition error in N-body clusters. Chem Phys Lett 380:654–664. CrossRefGoogle Scholar
  50. 50.
    Valiron P, Mayer I (1997) Hierarchy of counterpoise corrections for N-body clusters: generalization of the Boys-Bernardi scheme. Chem Phys Lett 275:46–55. CrossRefGoogle Scholar
  51. 51.
    Lendvay G, Mayer I (1998) Some difficulties in computing BSSE-corrected potential surfaces of chemical reactions. Chem Phys Lett 297:365–373. CrossRefGoogle Scholar
  52. 52.
    Brandenburg JG, Alessio M, Civalleri B et al (2013) Geometrical correction for the inter- and intramolecular basis set superposition error in periodic density functional theory calculations. J Phys Chem A 117:9282–9292. CrossRefPubMedGoogle Scholar
  53. 53.
    Turi L, Dannenberg JJ (1993) Correcting for basis set superposition error in aggregates containing more than two molecules: ambiguities in the calculation of the counterpoise correction. J Phys Chem 97:2488–2490. CrossRefGoogle Scholar
  54. 54.
    Civalleri B, Zicovich-Wilson CM, Valenzano L, Ugliengo P (2008) B3LYP augmented with an empirical dispersion term (B3LYP-D*) as applied to molecular crystals. CrystEngComm 10:405–410. CrossRefGoogle Scholar
  55. 55.
    Civalleri B, Doll K, Zicovich-Wilson CM (2007) Ab initio investigation of structure and cohesive energy of crystalline urea. J Phys Chem B 111:26–33. CrossRefPubMedGoogle Scholar
  56. 56.
    Brandenburg JG, Grimme S (2013) Dispersion corrected Hartree–Fock and density functional theory for organic crystal structure prediction. Springer-Verlag, Berlin Heidelberg, Berlin, pp 1–23Google Scholar
  57. 57.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104. CrossRefPubMedGoogle Scholar
  58. 58.
    Fernández-Ramos A, Smedarchina Z, Siebrand W, Zgierski MZ (2000) A direct-dynamics study of the zwitterion-to-neutral interconversion of glycine in aqueous solution. J Chem Phys 113:9714–9721. CrossRefGoogle Scholar
  59. 59.
    Bandyopadhyay P, Gordon MS, Bandyopadhyay P, Gordon MS (2012) A combined discrete/continuum solvation model: application to glycine 1104. CrossRefGoogle Scholar
  60. 60.
    Barone V, Adamo C, Lelj F (1995) Conformational behavior of gaseous glycine by a density functional approach. J Chem Phys 102:364–370. CrossRefGoogle Scholar
  61. 61.
    Csaszar AG (1992) Conformers of gaseous glycine. J Am Chem Soc 114:9568–9575. CrossRefGoogle Scholar
  62. 62.
    Császár AG, Perczel A (1999) Ab initio characterization of building units in peptides and proteins. Prog Biophys Mol Biol 71:243–309. CrossRefPubMedGoogle Scholar
  63. 63.
    Frey RF, Coffin J, Newton S et al (1992) Importance of correlation-gradient geometry optimization for molecular conformational analyses. J Am Chem Soc 114:5369–5377. CrossRefGoogle Scholar
  64. 64.
    Hu CH, Shen M, Schaefer HF (1993) Glycine conformational analysis. J Am Chem Soc 115:2923–2929. CrossRefGoogle Scholar
  65. 65.
    Jensen JH, Gordon MS (1991) The conformational potential energy surface of glycine: a theoretical study. J Am Chem Soc 113:7917–7924. CrossRefGoogle Scholar
  66. 66.
    Selvarengan P, Kolandaivel P (2004) Potential energy surface study on glycine, alanine and their zwitterionic forms. J Mol Struct THEOCHEM 671:77–86. CrossRefGoogle Scholar
  67. 67.
    Stepanian SG, Reva ID, Radchenko ED et al (1998) Matrix-isolation infrared and theoretical studies of the glycine conformers. J Phys Chem A 102:1041–1054. CrossRefGoogle Scholar
  68. 68.
    Kim CK, Park B-H, Lee HW, Kim CK (2013) Comprehensive studies on the tautomerization of glycine: a theoretical study. Org Biomol Chem 11:1407. CrossRefPubMedGoogle Scholar
  69. 69.
    Gavezzotti A (2008) Computational contributions to crystal engineering. CrystEngComm.
  70. 70.
    Chickos JS, Acree WE (2002) Enthalpies of sublimation of organic and organometallic compounds. 1910–2001. J Phys Chem Ref Data 31:537–698. CrossRefGoogle Scholar
  71. 71.
    Nguon Ngauv S, Sabbah R, Laffitie M (1977) Thermodynamique de composes azotes III. Etude Thermochimique de la glycine et de la l-α-alanine. Thermochim Acta 20:371–380. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Neubi F. XavierJr
    • 1
  • Antônio M. Da SilvaJr
    • 1
  • Glauco Favilla Bauerfeldt
    • 1
    Email author
  1. 1.Instituto de QuímicaUniversidade Federal Rural do Rio de JaneiroSeropédicaBrazil

Personalised recommendations