Advertisement

Investigation of 3D pharmacophore of N-benzyl benzamide molecules of melanogenesis inhibitors using a new descriptor Klopman index: uncertainties in model

  • Tuğba Alp Tokat
  • Burçin TürkmenoğluEmail author
  • Yahya Güzel
  • Dilek Şeyma Kızılcan
Original Paper
  • 37 Downloads

Abstract

We used a new descriptor called the Klopman index in our software of the “molecular comparative electron topology” (MCET) method to reduce the uncertainty resulting from the descriptors used in QSAR studies. The 3D pharmacophore model (3D-PhaM), which can demonstrate three-dimensional interaction between the ligand -receptor (L-R), is only possible with local reactive descriptors (LRD). The Klopman index, containing both Coulombic and frontier orbital and interactions of atoms of the ligand, is a good LRD. Molecular conformers having the best matching atoms with the template conformer can be selected as one of the most suitable spatial structures for interaction with the receptor, and the LRD values of the atoms in this conformer serve to determine 3D-PhaM. The 3D-PhaM of the N-benzyl benzamide derivatives, such as the melanogenesis inhibitor, was determined by ligand-based MCET and confirmed by the structure-based FlexX docking method. For compounds of the training set (42) and the external cross validation test set (6), the Q2 (0.862) and R2 (0.913) of the statistical parameters were calculated, respectively, and were checked by rm2 (0.85) of the stringent validation.

Keywords

N-Benzyl benzamide derivatives Klopman index Molecular docking 4D-QSAR MCET 

Notes

Acknowledgments

This work was financially supported by Erciyes University Scientific Research Projects (BAP) of Turkey (Grant no. FDK-2018-8187).

References

  1. 1.
    Albuquerque M, Brito M, Cunha E, Alencastro R, Antunes O, Castro H, Rodrigues C (2007) Multidimensional-QSAR: beyond the third-dimension in drug design. Curr Methods Med Chem Biol Phys 1:91–100Google Scholar
  2. 2.
    Amos RD, Alberts IL, Andrews JS et al (2001) The Cambridge analytic derivatives package, issue 6.5. University of Cambridge, CambridgeGoogle Scholar
  3. 3.
    Beildeck CL, Steel WH, Walker RA (2003) Surface effects on solvation characterization, and intra-molecular complications. Langmuir 19:4933–4939CrossRefGoogle Scholar
  4. 4.
    Benfenati E (2007) Predicting toxicity through computers: a changing world. Chem Cent J 1:32.  https://doi.org/10.1186/1752-153X-1-32 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bersuker IB, Dimoglo AS (1991) The electron- topological approach to the QSAR problem, in book. Rev Comput Chem 2:423–460.  https://doi.org/10.1002/9780470125793.ch10 CrossRefGoogle Scholar
  6. 6.
    Bersuker IB, Dimoglo AS, Yu M, Gorbachov P, Vlad F, Pesaro M (1991) Origin of musk fragrance activity: the electrontopologic approach. New J Chem 15:307–320Google Scholar
  7. 7.
    Bravi G, Gancia E, Mascagni P et al (1997) MS-WHIM, new 3D theoretical descriptors derived from molecular surface properties: a comparative 3D QSAR study in a series of steroids. J Comput Aided Mol Des 11:79–92CrossRefGoogle Scholar
  8. 8.
    Burden FR (2001) Quantitative structure-activity relationship studies using Gaussian processes. J Chem Inf Comput Sci 41:830–835.  https://doi.org/10.1021/ci000459c CrossRefPubMedGoogle Scholar
  9. 9.
    Cramer RD, Patterson DE, Bunce JD (1988) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110:5959–5967CrossRefGoogle Scholar
  10. 10.
    Cronin MTD, Schultz TW (2003) Pitfalls in QSAR. J Mol Struct 633:39–51CrossRefGoogle Scholar
  11. 11.
    Damoun S, Woude GV, Me’ndez F, Geerlings PJ (1997) Local softness as a regioselectivity indicator in [4+2] cycloaddition reactions. Phys Chem A 101:886–893.  https://doi.org/10.1021/jp9611840 CrossRefGoogle Scholar
  12. 12.
    Danishuddin, Khan AU (2016) Descriptors and their selection methods in QSAR analysis: paradigm for drug design. Drug Discov Today 21:1291–1302.  https://doi.org/10.1016/j.drudis.2016.06.013 CrossRefPubMedGoogle Scholar
  13. 13.
    El Malki Z, Bouachrine M, Hamidi M, Serein-Spirau F, Lere-Porte JP, Marc Sotiropoulos J (2016) Theoretical study of new donor-π-acceptor compounds based on carbazole, thiophene and benzothiadiazole for photovoltaic application as dyesensitized solar cells. J Mater Environ Sci 7:3244–3255Google Scholar
  14. 14.
    Fukui K, Fujimoto H (1966) Tetrahedron Lett 251Google Scholar
  15. 15.
    Gallant AR (1982) Nonlinear statistical inference. Wiley, New YorkGoogle Scholar
  16. 16.
    Goodarzi M, Dejaegher B, Heyden YV (2012) Feature selection methods in QSAR studies. J AOAC Int 95:636–651.  https://doi.org/10.5740/jaoacint.SGE_Goodarzi CrossRefPubMedGoogle Scholar
  17. 17.
    Guha R, Willighagen E (2012) A survey of quantitative descriptions of molecular structure. Curr Top Med Chem 12(18):1946–1956.  https://doi.org/10.2174/1568026611212180002 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Guzel Y, Aslan E, Turkmenoglu B, Su EM (2018) 4D-QSAR studies using a new descriptor of the Klopman index: antibacterial activities of sulfone derivatives containing 1,3,4-oxadiazole moiety based on MCET model. Curr Comput Aided Drug Des.  https://doi.org/10.2174/1573409914666180514093543 CrossRefGoogle Scholar
  19. 19.
    Hann MM, Leach AR, Harper G (2001) Molecular complexity and its impact on the probability of finding leads for drug discovery. J Chem Inf Comput Sci 41:856–864CrossRefGoogle Scholar
  20. 20.
    Hawkins DM (2004) The problem of overfitting. J Chem Inf Comput Sci 44:1–12.  https://doi.org/10.1021/ci0342472 CrossRefPubMedGoogle Scholar
  21. 21.
    Hoffmann R, Woodward RB, Amer J (1965) Orbital symmetries and endo-exo relationships in concerted cycloaddition reactions. Chem Soc 87:4388–4389.  https://doi.org/10.1021/ja00947a033 CrossRefGoogle Scholar
  22. 22.
    Hong YD, Baek HS, Cho H, Ahn SM, Rho HS, Park YH, Joo YH, Shin SS (2014) 3D-QSAR study of adamantyl N-benzylbenzamides as melanogenesis inhibitors. Bioorg Med Chem Lett 24:667–673CrossRefGoogle Scholar
  23. 23.
    Hopfinger A, Wang S, Tokarski J, Jin B, Albuquerque M, Madhav P, Duraiswami C (1997) Construction of 3D-QSAR models using the 4D-QSAR analysis formalism. J Am Chem Soc 119:10509–10524.  https://doi.org/10.1021/ja9718937 CrossRefGoogle Scholar
  24. 24.
    Hubalovsky S (2015) System approach, modeling, simulation as educational technologies in algorithm development and programming. Procedia Soc Behav Sci 191:2226–2230.  https://doi.org/10.1016/j.sbspro.2015.04.267 CrossRefGoogle Scholar
  25. 25.
    Jackson CM, Esnouf MP, Winzor DJ, Duewer DL (2007) Defining and measuring biological activity: applying the principles of metrology. Accred Qual Assur 12:283–294CrossRefGoogle Scholar
  26. 26.
    Karelson M, Lobanov VS (1996) Quantum-chemical descriptors in QSAR/QSPR studies. Chem Rev 96:1027–1044.  https://doi.org/10.1021/cr950202r CrossRefPubMedGoogle Scholar
  27. 27.
    Kiralj R, Ferreira MMC (2009) Basic validation procedures for regression models in QSAR and QSPR studies: theory and application. J Braz Chem Soc 20:770–787.  https://doi.org/10.1590/S0103-50532009000400021 CrossRefGoogle Scholar
  28. 28.
    Klebe G, Abraham U, Mietzner T (1994) Molecular similarity indexes in a comparative- analysis (CoMSIA) of drug molecules to correlate and predict their biological-activity. J Med Chem 37:4130–4146.  https://doi.org/10.1021/jm00050a010 CrossRefPubMedGoogle Scholar
  29. 29.
    Klopman G (1968) Chemical reactivity and the concept of charge- and frontier-controlled reactions. J Am Chem Soc 90:223–243CrossRefGoogle Scholar
  30. 30.
    Kone M, Illien B, Groton J, Laurence C (2005) B3LYP and MP2 calculations of the enthalpies of hydrogen-bonded complexes of methanol with neutral bases and anions: comparison with experimental data. JPhys Chem A 109:11907–11913.  https://doi.org/10.1021/jp054173s CrossRefGoogle Scholar
  31. 31.
    Lewis DF, Ioannides C, Parke DV (1994) Interaction of a series of nitriles with the alcohol-inducible isoform of P450: computer analysis of structure-activity relationships. Xenobiotica. 24(5):401–408CrossRefGoogle Scholar
  32. 32.
    Liao HL, Chu SY (2003) Hydrogen bond acceptor capability of carbonyl p-electrons—case study of the hydrogen-bonded urea dimer. New J Chem 27:421–424CrossRefGoogle Scholar
  33. 33.
    LoPachin RM, Gavin T (2016) Reactions of electrophiles with nucleophilic thiolate sites: relevance to pathophysiological mechanisms and remediation. Free Radic Res 50:195–205.  https://doi.org/10.3109/10715762.2015.1094184 CrossRefPubMedGoogle Scholar
  34. 34.
    Morell C, Grand A, Toro-Labbé A (2007) Using the reactivity–selectivity descriptor Δf(r) in organic chemistry. Theor Comput Chem 19:101–117.  https://doi.org/10.1016/S1380-7323(07)80008-2
  35. 35.
    Mundy JL, Huang C, Liu J (1994) MORSE: a 3D object recognition system based on geometric invariants. In: Proc. DARPA Image Understanding Workshop, Monterey, CA pp 1393–1402Google Scholar
  36. 36.
    Natarajan R, Basak SC, Mills D, Kraker JJ, Hawkins DM (2008) Quantitative structure-activity relationship modeling of mosquito repellents using calculated descriptors. Croat Chem Acta 81:333–340Google Scholar
  37. 37.
    Noorizadeh H, Farmany A (2010) Exploration of linear and nonlinear modeling techniques to predict of retention index of essential oils. J Chin Chem Soc 57:1268–1277.  https://doi.org/10.1002/jccs.201000188 CrossRefGoogle Scholar
  38. 38.
    Obrezanova O, Segall MD (2010) Gaussian processes for classification: QSAR modeling of ADMET and target activity. J Chem Inf Model 50:1053–1061.  https://doi.org/10.1021/ci900406x CrossRefPubMedGoogle Scholar
  39. 39.
    Obrezanova O, Csa’nyi G, Gola JMJ, Segall MD (2007) Gaussian processes: a method for automatic QSAR modeling of ADME properties. J Chem Inf Model 47:1847–1857.  https://doi.org/10.1021/ci7000633 CrossRefPubMedGoogle Scholar
  40. 40.
    Obrezanova O, Gola JMR, Champness EJ, Segall MD (2008) Automatic QSAR modeling of ADME properties: blood-brain barrier penetration and aqueous solubility. J Comput Aided Mol Des 22:431–440.  https://doi.org/10.1007/s10822-008-9193-8 CrossRefPubMedGoogle Scholar
  41. 41.
    Palczewska A, Neagu D, Ridley M (2013) Using Pareto points for model identification in predictive toxicology. J Cheminform 5:16.  https://doi.org/10.1186/1758-2946-5-16 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85:3533–3539CrossRefGoogle Scholar
  43. 43.
    Pearson RG (1966) Acids and bases. Science 151:172–177CrossRefGoogle Scholar
  44. 44.
    Poleshchuk OK, Branchadell V, Brycki B, Fateev AV, Legon AC (2006) HFI and DFT study of the bonding in complexes of halogen and interhalogen diatomics with Lewis base. THEOCHEM 760:175–182.  https://doi.org/10.1016/j.theochem.2005.10.016 CrossRefGoogle Scholar
  45. 45.
    Rarey M, Dixon JS (1998) Feature trees: a new molecular similarity measure based on tree matching. J Comput Aided Mol Des 12:471–490.  https://doi.org/10.1023/A:1008068904628 CrossRefPubMedGoogle Scholar
  46. 46.
    Rarey M, Kramer B, Lengauer T, Klebe G (1996) A fast, flexible docking method using an incremental construction algorithm. J Mol Biol 261:470–489CrossRefGoogle Scholar
  47. 47.
    Rejer I, Lorenz K (2013) Genetic algorithm and forward method for feature selection in EEG feature space. J Theor Appl Comput Sci 7:72–82Google Scholar
  48. 48.
    Sahu VK, Khan AKR, Singh RK, Singh PP (2008) Hydrophobic, polar and hydrogen bonding based drug-receptor interaction of Tetrahydroimidazobenzodiazepinones. Am J Immunol 4:33–42CrossRefGoogle Scholar
  49. 49.
    Salem L (1968) Intermolecular orbital theory of the interaction between conjugated systems. I. General theory; II. Thermal and photochemical calculations. J Am Chem Soc 90:543–552. 553–566.  https://doi.org/10.1021/ja01005a001 CrossRefGoogle Scholar
  50. 50.
    Sauer S (1967) Diels-Alder reactions II: the reaction mechanism. Angew Chem Int Ed 6:16–33.  https://doi.org/10.1002/anie.196700161 CrossRefGoogle Scholar
  51. 51.
    Schwaighofer A, Schroeter T, Mika S, Laub J, Laak AT, Sulzle D, Ganzer U, Heinrich N, Muller KR (2007) Accurate solubility prediction with error bars for electrolytes: a machine learning approach. J Chem Inf Comput Sci 47:407–424.  https://doi.org/10.1021/ci600205g CrossRefGoogle Scholar
  52. 52.
    Sharma S, Ravichandran V, Jain PK, Mourya VK, Agrawal RK (2008) Prediction of caspase-3 inhibitory activity of 1,3-dioxo-4-methyl-2,3- dihydro-1h-pyrrolo[3,4-c] quinolines: QSAR study. J Enzyme Inhib Med Chem 424–431.  https://doi.org/10.1080/14756360701652476 CrossRefGoogle Scholar
  53. 53.
    Stone AJ (1993) Computation of charge-transfer energies by perturbation theory. Chem Phys Lett 211:101–109.  https://doi.org/10.1016/0009-2614(93)80058-W CrossRefGoogle Scholar
  54. 54.
    Thipnate P, Liu J, Hannongbua S, Hopfinger AJ (2009) 3D pharmacophore mapping using 4D QSAR analysis for the cytotoxicity of lamellarins against human hormone-dependent T47D breast cancer cells. J Chem Inf Model 49:2312–2322.  https://doi.org/10.1021/ci9002427 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Tirgar A, Golbabaei F, Hamedi J, Nourijelyani K (2011) Removal of airborne hexavalent chromium using alginate as a biosorbent. Int J Environ Sci Technol 8:237–244.  https://doi.org/10.1007/BF03326212 CrossRefGoogle Scholar
  56. 56.
    Todeschini R, Consonni V (2000) Handbook of molecular descriptors. Wiley-VCH, Weinheim.  https://doi.org/10.1002/9783527613106 CrossRefGoogle Scholar
  57. 57.
    Todeschini R, Consonni V, Maiocchi A (1998) The K correlation index: theory development and its applications in chemometrics. Chemom Intell Lab Syst 46:13–29CrossRefGoogle Scholar
  58. 58.
    Trapani G, Franco M, Latrofa A, Genchi G, Liso G (1992) Synthesis and benzodiazepine receptor binding of some 4H-pyrimido [2,1-b] benzothiazol-4-ones. Eur J Med Chem 27:39–44.  https://doi.org/10.1016/0223-5234(92)90058-9 CrossRefGoogle Scholar
  59. 59.
    Turkmenoglu B, Guzel Y (2018) Molecular docking and 4D-QSAR studies of metastatic Cancer inhibitor Thiazoles. Comput Biol Chem 76:327–337.  https://doi.org/10.1016/j.compbiolchem.2018.07.003 CrossRefPubMedGoogle Scholar
  60. 60.
    Van der Vaaart A, Merz KM (2002) Charge transfer in small hydrogen bonded clusters. J Chem Phys 116:7380–7388.  https://doi.org/10.1063/1.1466829 CrossRefGoogle Scholar
  61. 61.
    Weininger D (1988) SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci 28:31–36CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceErciyes UniversityKayseriTurkey

Personalised recommendations