Advertisement

Atomic shells according to ionization energies

  • Dariush H. ZadehEmail author
Original Paper

Abstract

This article relies only on experimental data rather than getting involved with theories, calculations, approximations, or interpolations. Experimental ionization energies of all atoms in the periodic table are collected and utilized to discover the order of electronic shells. The assumption in this paper is mainly the energy difference between atomic shells. In other words, one should observe an abrupt change in the energy moving from one atomic shell to another. Electronic energies within an atom are either kinetic or potential. Potential energy can be further broken into “electron–nucleus attraction” and “electron–electron repulsion” energies. The ionization energy that holds an electron onto an atom is equal to the balance of electronic energies. Electronic energies should show jumps and drops when moving from one atomic shell to another and ionization energy is the only part of total energy that can be obtained experimentally. Hence, the variations of experimental ionization energies between consecutive electrons were utilized to investigate the order of atomic shells. The variations of ionization energy were drawn versus the electron numbers to find abrupt changes in the energy, which are so-called “peaks”. Then the observed peaks in the graphs were recorded as evidence for the order of atomic shells. The observed order of peaks did not completely match and support the order of atomic shells given by the well-known aufbau (or Madelung) rule. Thus, the observation is reported and a consistent view of the periodic table according to the new order is presented.

Keywords

Atomic shells Ionization energy Periodic table Aufbau rule 

Notes

Supplementary material

894_2019_4112_MOESM1_ESM.docx (113 kb)
ESM 1 (DOCX 112 kb)
894_2019_4112_MOESM2_ESM.docx (1.9 mb)
ESM 2 (DOCX 1906 kb)

References

  1. 1.
    Scerri E (2019) Can quantum ideas explain chemistry’s greatest icon? Nature 565:557–559PubMedCrossRefGoogle Scholar
  2. 2.
    Jensen B (1986) Classification, symmetry and the periodic table. Comp Maths Appls 12B(I/2):487–510Google Scholar
  3. 3.
    Yakushev A, Eichler R (2016) Gas-phase chemistry of element 114, flerovium. Nobel Symposium NS160 – Chemistry and Physics of Heavy and Superheavy Elements.  https://doi.org/10.1051/epjconf/201613107003 CrossRefGoogle Scholar
  4. 4.
    Jensen WB (1982) The positions of lanthanum (actinium) and lutetium (lawrencium) in the periodic table. J Chem Educ 59:634–636CrossRefGoogle Scholar
  5. 5.
    Scerri ER (1998) How Good Is the Quantum Mechanical Explanation of the Periodic System? J Chem Edu 75(11):1384.  https://doi.org/10.1021/ed075
  6. 6.
    Bohr N (1913) On the constitution of atoms and molecules, part I. Philos Mag 26(151):1–24.  https://doi.org/10.1080/14786441308634955 CrossRefGoogle Scholar
  7. 7.
    Meek TL, Allen LC (2002) Configuration irregularities: deviations from the Madelung rule and inversion of orbital energy levels. Chem Phys Lett 362(5–6):362–364.  https://doi.org/10.1016/S0009-2614(02)00919-3 CrossRefGoogle Scholar
  8. 8.
    Schoenfeld WG, Chang ES, Geller M, Johansson S, Nave G, Sauval AJ, Grevesse N (1995) High excitation Rydberg levels of Fe I from the ATMOS solar spectrum at 2.5 and 7 μm, Astron. Astrophys 301:593–601Google Scholar
  9. 9.
    Johnson WR, Soff G (1985) The Lamb shift in hydrogen-like atoms, 1 ≤ Z ≤ 110. At Data Nucl Data Tables 33:405–446.  https://doi.org/10.1016/0092-640X(85)90010-5 CrossRefGoogle Scholar
  10. 10.
    Beigang R, Schmidt D, West PJ (1983) Laser spectroscopy of high Rydberg states of light alkaline-earth elements (Be and Mg). J Phys (Paris) Colloques 44:C7–229–C7-237.  https://doi.org/10.1051/jphyscol:1983719 Google Scholar
  11. 11.
    Kramida AE, Ryabtsev AN (2007) A critical compilation of energy levels and spectral lines of neutral boron. Phys Scr 76:544–557.  https://doi.org/10.1088/0031-8949/76/5/024 CrossRefGoogle Scholar
  12. 12.
    Haris K, Kramida A (2017) Critically evaluated spectral data for neutral carbon (C I). Astrophys J Suppl Ser 233:16.  https://doi.org/10.3847/1538-4365/aa86ab CrossRefGoogle Scholar
  13. 13.
    Eriksson KBS, Pettersson JE (1971) New measurements in the spectrum of the neutral nitrogen atom. Phys Scr 3:211–217.  https://doi.org/10.1088/0031-8949/3/5/003 CrossRefGoogle Scholar
  14. 14.
    Eriksson KBS, Isberg HBS (1968) New measurements in the spectrum of atomic oxygen. Ark Fys (Stockholm) 37:221–230Google Scholar
  15. 15.
    Lidén K (1949) The arc spectrum of fluorine. Ark Fys (Stockholm) 1(9):229–267 Erratum: 1(9):268Google Scholar
  16. 16.
    Saloman EB, Sansonetti CJ (2004) Wavelengths, energy level classifications, and energy levels for the spectrum of neutral neon. J Phys Chem Ref Data 33:1113–1158.  https://doi.org/10.1063/1.1797771 CrossRefGoogle Scholar
  17. 17.
    Wu CM (1971) Studies in the optical spectrum of singly ionized sodium, Na II. Ph.D. Thesis, University of British Columbia, Canada, p 119 Google Scholar
  18. 18.
    Martin WC, Zalubas R (1980) Energy levels of magnesium, Mg I through Mg XII. J Phys Chem Ref Data 9:1–58.  https://doi.org/10.1063/1.555617 CrossRefGoogle Scholar
  19. 19.
    Biémont E, Frémat Y, Quinet P (1999) Ionization potentials of atoms and ions from lithium to tin (Z = 50). At Data Nucl Data Tables 71:117–146.  https://doi.org/10.1006/adnd.1998.0803 CrossRefGoogle Scholar
  20. 20.
    Jupén C, Engström L (2002) The spectrum and term system of S VII. Phys Scr 66:140–149.  https://doi.org/10.1238/Physica.Regular.066a00140 CrossRefGoogle Scholar
  21. 21.
    Sapirstein J, Cheng KT (2011) Matrix calculations of energy levels of the lithium isoelectronic sequence. Phys Rev A 83:012504.  https://doi.org/10.1103/PhysRevA.83.012504
  22. 22.
    Sugar J, Corliss C (1985) Atomic energy levels of the iron-period elements: potassium through nickel. J Phys Chem Ref Data 14(Suppl. 2):1–664Google Scholar
  23. 23.
    Rodrigues GC, Indelicato P, Santos JP, Patté P, Parente F (2004) Bohrium, systematic calculation of total atomic energies of ground state configurations. At Data Nucl Data Tables 86:117–233.  https://doi.org/10.1016/j.adt.2003.11.005 CrossRefGoogle Scholar
  24. 24.
    Kramida A, Ralchenko Yu, Reader J, NIST ASD Team (2014) NIST ionization energy database NIST atomic spectra database (ver. 5.2). National Institute of Standards and Technology, Gaithersburg, MD. https://physics.nist.gov/asd. Accessed 9 August 2017
  25. 25.
    Cotton FA, Wilkinson G (1988) Advanced inorganic chemistry, 5th edn. Wiley, New YorkGoogle Scholar
  26. 26.
    McNaught AD, Wilkinson A (1997) IUPAC. Compendium of chemical terminology, the Gold Book, 2nd edn. Blackwell, OxfordGoogle Scholar
  27. 27.
    Zadeh DH (2017) Electronic structures of elements according to ionization energies. J Mol Model 23:357.  https://doi.org/10.1007/s00894-017-3534-2 PubMedCrossRefGoogle Scholar
  28. 28.
    Zadeh DH, Grice ME, Concha MC, Murray JS, Politzer P (1995) Nonlocal density functional calculation of gas phase heats of formation. J Comp Chem 16(5):654–658Google Scholar
  29. 29.
    Gao J, Zadeh DH, Shao L (1995) A polarizable intermolecular potential function for simulation of liquid alcohols. J Phys Chem 99(44):16460–16467.  https://doi.org/10.1021/j100044a039 CrossRefGoogle Scholar
  30. 30.
    Grogan F, Holst M, Lindblom L, Amaro R (2017) Reliability assessment for large-scale molecular dynamics approximations. J Chem Phys 147(23):234106PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Liu R, Bloom BP, Waldeck DH, Zhang P, Beratan DN (2018) Improving solar cell performance using quantum dot triad charge-separation engines. J Phys Chem, C 122(11):5924–5934CrossRefGoogle Scholar
  32. 32.
    Monika S, Burov S, Weirich KL, Scholz BJ, Tabei SMA, Gardel ML, Dinner AR (2016) Cycling state that can lead to glassy dynamics in intracellular transport. Phys Rev 6(1):011037Google Scholar
  33. 33.
    Dunbar JA, Arthur EJ, White AM, Kubarych KJ (2015) Ultrafast 2D-IR and simulation investigations of preferential solvation and cosolvent exchange dynamics. J Phys Chem B 2015 119:6271–6279PubMedCrossRefGoogle Scholar
  34. 34.
    Ding X, Vilseck JZ, Hayes RL, Brooks CL (2017) Gibbs sampler-based lambda-dynamics and Rao-Blackwell estimator for alchemical free energy calculation. J Chem Theory Comput 13:2501–2510Google Scholar
  35. 35.
    Hoehn R, Carignano MA, Kais S, Francisco JS, Gladich I (2016) Hydrogen bonding and orientation effects on the accommodation of methylamine at the air-water interface. J Chem Phys 144:214701PubMedCrossRefGoogle Scholar
  36. 36.
    Rego LGC, Batista VS (2003) Quantum dynamics simulations of interfacial electron transfer in sensitized TiO2 semiconductors. J Am Chem Soc 125(26):7989–7997PubMedCrossRefGoogle Scholar
  37. 37.
    Munteanu CR, Henriksen C, Felker PM, Fernandez B (2013) The He-, Ne-, and Ar-phosgene intermolecular potential energy surfaces. J Phys Chem A 117:3835–3843Google Scholar
  38. 38.
    Mondal J, Morrone J, Berne BJ (2013) How hydrophobic drying forces impact the kinetics of molecular recognition. Proc Nat Acad Sci USA 110:13277–13282PubMedCrossRefGoogle Scholar
  39. 39.
    Mauguiere FAL, Collins P, Stamatiadis S, Li A, Ezra GS, Farantos SC, Kramer ZC, Carpenter BK, Wiggins S, Guo H (2016) Toward understanding the roaming mechanism in H + MgH -> Mg + HH reaction. J Phys Chem A 120:5145–5154PubMedCrossRefGoogle Scholar
  40. 40.
    Santra B, Klimes SBJ, Tkatchenko A, Alfe D, Slater B, Michaelides A, Car R, Scheffler M (2013) On the accuracy of van der Waals inclusive density-functional theory exchange-correlation functionals for ice at ambient and high pressures. J Chem Phys 139(15)PubMedCrossRefGoogle Scholar
  41. 41.
    Kollias AC, Domin D, Hill G, Frenklach M, Golden DM, Lester WAJ (2005) Quantum Monte Carlo Study of heats of formation and bond dissociation energies of small hydrocarbons. Int J Chem Kin 37:583CrossRefGoogle Scholar
  42. 42.
    McLeod MJ, Goodman AJ, Ye HZ, Nguyen HVT, Van Voorhis T, Johnson JA (2018) Robust gold nanorods stabilized by bidentate N-heterocyclic-carbene–thiolate ligands. Nat Chem.  https://doi.org/10.1038/s41557-018-0159-8 PubMedCrossRefGoogle Scholar
  43. 43.
    Marsalek O, Markland TE (2016) Ab initio molecular dynamics with nuclear quantum effects at classical cost: ring polymer contraction for density functional theory. J Chem Phys 144(5)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Retired professor of SUNY ErieClarence CenterUSA

Personalised recommendations