The stability, electronic, and magnetic properties of rare-earth doped silicon-based clusters

  • Yi-Wei Fan
  • Huai-Qian WangEmail author
  • Hui-Fang Li
Original Paper


The rare-earth doped silicon-based clusters exhibit remarkable structural, physical, and chemical properties, which make them attractive candidates as building units in designing of cluster-based materials with special optical, electronic, and magnetic properties. The structural, stability, electronic, and magnetic properties of pure silicon Sin + 1 (n = 1–9) and rare-earth doped clusters SinEu (n = 1–9) are investigated using the “stochastic kicking” (SK) global search technique combined with density functional theory (DFT) calculations. It was found that: 1) the ground state structures of pure silicon clusters tend to form compact structures rather than cages with the increase of cluster size; 2) the ground state structures for doped species were found to be additional or substitutional sites, and the rare-earth atoms tend to locate on the surface of the silicon clusters; 3) the average binding energy of the doped clusters increased gradually and exhibited the final phenomenon of saturation with the increase of clusters size. The average binding energy of doped clusters was slightly higher than that of pure silicon clusters of the same size, which indicated that the rare-earth atom encapsulated by silicon enhanced the stability of the silicon clusters to some degree; 4) the doped clusters have strong total magnetic moments, which mainly originated from the contribution of rare-earth atoms, whereas the contribution of silicon atoms were almost negligible. As the cluster size increased, the total magnetic moments of binary mixed clusters tended to be stable.


Atomic cluster Density functional theory Magnetic moment Kick model 



The project supported by the Natural Science Foundation of Fujian Province of China (Grant No. 2017 J01001), the Science and Technology Plan of Quanzhou (Grant Nos. 2018C077R and 2018C078R), the New Century Excellent Talents in Fujian Province University (Grant No. 2014FJ-NCET-ZR07), the Postgraduates’ Innovative Fund in Scientific Research of Huaqiao University and the Program for Excellent Youth in Fujian Province University (Grant No. JA13009).


  1. 1.
    Fernandes GFS, Machado FBC, Ferrâo LFA (2018) A quantitative tool to establish magic number clusters, ε3, applied in small silicon clusters, Si2-11. J Mol Model 24(8):203CrossRefGoogle Scholar
  2. 2.
    Douglass DC, Bucher JP, Bloomfield LA (1992) Magnetic studies of free nonferromagnetic clusters. Phys Rev B 45:6341–6344CrossRefGoogle Scholar
  3. 3.
    Cox AJ, Louderback JG, Bloomfield LA (1993) Experimental observation of magnetism in rhodium clusters. Phys Rev Lett 71:923–926CrossRefGoogle Scholar
  4. 4.
    Cox AJ, Louderback JG, Apsel SE, Bloomfield LA (1994) Magnetism in 4d-transition metal clusters. Phys Rev B 49:12295CrossRefGoogle Scholar
  5. 5.
    Hou LY, Yang JC, Liu YM (2017) Density-function study of the structures and properties of holmium-doped silicon clusters HoSin (n=3-9) and their anions. J Mol Model 23:117CrossRefGoogle Scholar
  6. 6.
    Selby K, Vollmer M, Masui J, Kresin V, Dheer WA, Knight WD (1989) Surface plasma resonances in free metal clusters. Phys Rev B 40:5417–5427CrossRefGoogle Scholar
  7. 7.
    Brack M (1989) Multipole vibrations of small alkali-metal spheres in a semiclassical description. Phys Rev B 39:3533CrossRefGoogle Scholar
  8. 8.
    Jing Q, Ge GX, Cao HB, Huang XC, Liu XY, Yang HX (2010) Structural, electronic and magnetic properties of the GenEu (n=1-13) clusters. Acta Phys-Chim Sin 26:2510–2514Google Scholar
  9. 9.
    Zhang CR, Chen YH, Wang DB, Wu YZ, Chen HS (2008) Structures and electronic properties of Sim N(8-m). Chin Phys B 17:2938–2950CrossRefGoogle Scholar
  10. 10.
    Tekin A, Hartke B (2004) Global geometry optimization of small silicon clusters with empirical potentials and at the DFT level. Phys Chem Chem Phys 6:503–509CrossRefGoogle Scholar
  11. 11.
    Lyon JT, Gruene P, Fielicke A, Meijer G, Janssens E, Claes P, LieVens P (2009) Structures of silicon cluster cations in the gas phase. J Am Chem Soc 131:1115–1121CrossRefGoogle Scholar
  12. 12.
    Nigam S, Kulshreshtha SK, Majumder C (2007) Theoretical study of pure (Sin) and doped silicon (AlSin-1 and PSin-1) clusters (n=2–13) using Ab initio molecular orbital theory. J Comput Methods Sci Eng 7:319–335Google Scholar
  13. 13.
    Yang J, Wang J, Hao Y (2015) Europium-doped silicon clusters EuSin (n=3-11) and their anions: structures, thermochemistry, electron affinities, and magnetic moments. Theor Chem Accounts 134:81CrossRefGoogle Scholar
  14. 14.
    Ho KM, Shvartsburg AA, Pan B, Lu ZY, Wang CZ, Wacker JG, Fye JL, Jarrold MF (1998) Structures of medium-sized silicon clusters. Nature (London) 392:582–585CrossRefGoogle Scholar
  15. 15.
    Hagelberg F, Leszezynski J, Murashov V, Mol SJ (1998) Theoretical investigations on small closed-shell siliconN clusters. J Mol Struc-Theochem 454:209–216CrossRefGoogle Scholar
  16. 16.
    Feng Y, Yang J (2017) Stability and electronic properties of praseodymium- doped silicon clusters PrSin (n=12-21). J Mol Model 23:180CrossRefGoogle Scholar
  17. 17.
    Ma L, Zhao JJ, Wang JG et al (2006) Growth behavior and magnetic properties of SinFe(n=2-14) clusters. Phys Rev B 73:125439CrossRefGoogle Scholar
  18. 18.
    Guo LJ, Liu X, Zhao GF et al (2007) Computational investigation of TiSin(n=2-15) clusters by the density-functional theory. J Chem Phys 126:1395Google Scholar
  19. 19.
    Wang JG, Zhao JJ, Ma L et al (2007) Structure and magnetic properties of cobalt doped Sin (n=2-14) clusters. Phys Lett A 367:335–344CrossRefGoogle Scholar
  20. 20.
    Martin TP, Schaber H (1985) Mass spectra of Si, Ge, and Sn clusters. J Chem Phys 8:855–858CrossRefGoogle Scholar
  21. 21.
    Cheshnovsky O, Yang SH, Pettiette CL, Craycraft MJ, Liu Y, Smalley RE (1987) Ultraviolet photoelectron spectroscopy of semiconductor clusters: silicon and germanium. Chem Phys Lett 13:119–124CrossRefGoogle Scholar
  22. 22.
    Honea EC, Ogura A, Peale DR, Felix C, Murray CA, Raghavachari K, Sprenger WO, Jarrold MF, Brown WL (1999) Structures and coalescence behavior of size-selected silicon nanoclusters studied by surface-plasmon-polariton enhanced Raman spectroscopy. J Chem Phys 110:12161–12172CrossRefGoogle Scholar
  23. 23.
    Jarrold MF, Brown WL (1993) Raman spectra of size-selected silicon clusters and comparison with calculated structures. Nature (London) 366:42–44CrossRefGoogle Scholar
  24. 24.
    Ohara M, Miyajima K, Pramann A, Nakajima A, Kaya K (2002) Geometric and Electronic Structures of Terbium−Silicon Mixed Clusters (TbSin; 6 ≤n ≤ 16). J Phys Chem A 106:3702–3705CrossRefGoogle Scholar
  25. 25.
    Ohara M, Koyasu K, Nakajima A, Kaya K (2003) Geometric and electronic structures of metal (M)-doped silicon clusters (M=Ti, Hf, Mo and W). Chem Phys Lett 371:490–497CrossRefGoogle Scholar
  26. 26.
    Beck SM (1987) Studies of silicon cluster-metal atom compound formation in a supersonic molecular beam. J Chem Phys 87:4233–4234CrossRefGoogle Scholar
  27. 27.
    Beck SM (1989) Mixed metal-silicon clusters formed by chemical reaction in a supersonic molecular beam: Implications for reactions at the metal/silicon interface. J Chem Phys 90:6306–6312CrossRefGoogle Scholar
  28. 28.
    Nigam S, Majumder C, Kulshreshtha SK (2004) Structural and electronic properties of Sin, Sin +, and AlSin-1 (n=2-13) clusters: Theoretical investigation based on Ab initio molecular orbital theory. J Chem Phys 121:7756–7763CrossRefGoogle Scholar
  29. 29.
    Jarrold MF (1991) Nanosurface chemistry on size-selected silicon clusters. Science 252:1085–1092CrossRefGoogle Scholar
  30. 30.
    Brown WL, Freeman RR, Raghavachari K, Schluter M (1987) Covalent group IV atomic clusters. Science 235:860–865CrossRefGoogle Scholar
  31. 31.
    Hayashi S, Kanzawa Y, Kataoka M, Nagarede T, Yamamoto K (1993) Photoluminescence spectra of clusters of group IV elements embedded in SiO2 matrices. Z Phys D 26:144–146CrossRefGoogle Scholar
  32. 32.
    Bloomfield LA, Freeman RR, Brown WL (1985) Photofragmentation of mass-resolved Si2-12 + Clusters. Phys Rev Lett 54:2246–2249CrossRefGoogle Scholar
  33. 33.
    Jarrold MF, Honea EC (1991) Dissociation of large silicon clusters: the approach to bulk behavior. J Phys Chem 95:9181–9185CrossRefGoogle Scholar
  34. 34.
    Raghavachari K, Logovinsky VV (1985) Structure and bonding in small silicon clusters. Phys Rev Lett 55:2853CrossRefGoogle Scholar
  35. 35.
    Raghavachari K (1986) Theoretical study of small silicon clusters: equilibrium geometries and electronic structures of Sin (n=2-7, 10). J Chem Phys 84:5672–5686Google Scholar
  36. 36.
    Raghavachari K, Rohlfing CM (1988) Bonding and stabilities of small silicon clusters: a theoretical study of Si7-Si10. J Chem Phys 89:2219–2234CrossRefGoogle Scholar
  37. 37.
    Zhu XL, Zeng XC, Lei YA (2003) Structures and stability of medium silicon clusters. II. Ab initio molecular-orbital calculations of Si7-Si11. J Chem Phys 118:3558–3570CrossRefGoogle Scholar
  38. 38.
    Raghavachari K, Rohlfing CM (1992) Structures of Si10. Are there conventionally bonded low-energy isomers? Chem Phys Lett 198:521–525CrossRefGoogle Scholar
  39. 39.
    Rata I, Shvartsburg AA, Horoi M, Frauenheim T, Michael Siu KW, Jackson KA (2000) Single-parent evolution algorithm and the optimization of Si Clusters. Phys Rev Lett 85:546–549CrossRefGoogle Scholar
  40. 40.
    Blondel C, Delsart C, Goldfarb F (2001) Electron spectrometry at the μeV level and the electron affinities of Si and F. J Phys B 34:L281–L288CrossRefGoogle Scholar
  41. 41.
    Hou L, Yang J, Liu Y (2016) Reexamination of structures, stabilities, and electronic properties of holmium-doped silicon clusters HoSin (n=12-20). J Mol Model 22:193CrossRefGoogle Scholar
  42. 42.
    Zhao RN, Chen R, Yuan YH et al (2016) A density functional investigation on the electronic and magnetic properties of LnSi (Ln=La-Lu) diatom. J Chem Sci 128:365–371CrossRefGoogle Scholar
  43. 43.
    Yang J, Feng Y, Xie X et al (2016) Gadolinium-doped silicon clusters GdSin (n=2-9) and their anions: structures, thermochemistry, electron affinities, and magnetic moments. Theor Chem Accounts 135:204CrossRefGoogle Scholar
  44. 44.
    Khanna SN, Rao BK, Jena P (2002) Magic numbers in metallo-inorganic clusters: chromium encapsulated in silicon cages. Phys Rev Lett 89:016803CrossRefGoogle Scholar
  45. 45.
    Grubisic A, Wang H, Ko YJ, Bowen KH (2008) Photoelectron spectroscopy of europium-silicon cluster anions, EuSin (3 ≤ n ≤ 17). J Chem Phys 129:908CrossRefGoogle Scholar
  46. 46.
    Jaiswal S, Babar VP, Kumar V (2013) Growth behavior, electronic structure, and vibrational properties of SinY anion clusters (n=4-20): metal atom as linker and endohedral dopant. Phys Rev B 88:085412Google Scholar
  47. 47.
    Zhao GF, Sun JM, Gu YZ, Wang YX (2009) Density-functional study of structural, electronic, and magnetic properties of the ZrnCr (n=2-14) clusters. J Chem Phys 131:054302CrossRefGoogle Scholar
  48. 48.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, VreVen T, Montgomery Jr JA, Peralta JE, Ogliaor F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, YazyeV O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dan-nenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, revision C.01. Gaussian Inc, WallingfordGoogle Scholar
  49. 49.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  50. 50.
    Igel-Mann G, Stoll H, Preuss H (1988) Pseudopotentials for main group elements (IIIa through VIIa). Mol Phys 65:1321–1328CrossRefGoogle Scholar
  51. 51.
    Xie X, Hao D, Yang J (2015) Ytterbium doped silicon clusters YbSin (n=4–10) and their anions: structures, thermochemistry, and electron affinities. Chem Phys 461:11–19CrossRefGoogle Scholar
  52. 52.
    Zhang RQ, Chu TS, Lee ST (2001) Computation of large systems with an economic basis set: Ab initio calculations of silicon oxide clusters. J Chem Phys 114:5531–5536CrossRefGoogle Scholar
  53. 53.
    Mclean AD, Chandler GS (1980) Contracted gaussian basis sets for molecular calculations. I. Second row atoms, Z=11-18. J Chem Phys 72:5639CrossRefGoogle Scholar
  54. 54.
    Wang HQ, Kuang XY, Li HF (2010) Density functional study of structural and electronic properties of bimetallic copper–gold clusters: comparison with pure and doped gold clusters. Phys Chem Chem Phys 12:5156CrossRefGoogle Scholar
  55. 55.
    Li HF, Kuang XY, Wang HQ (2011) Probing the structural and electronic properties of lanthanide-metal-doped silicon clusters: M@Si6 (M = Pr, Gd, Ho). Phys Lett A 375:2836–2844CrossRefGoogle Scholar
  56. 56.
    Wang HQ, Li HF, Wang JX, Kuang XY (2012) Structural, electronic and magnetic effects of Al-doped niobium clusters: a density functional theory study. J Mol Model 18:2993–3011CrossRefGoogle Scholar
  57. 57.
    Wang HQ, Li HF (2012) Probing the structural and electronic properties of Al-doped small niobium clusters. Chem Phys Lett 554:231–235CrossRefGoogle Scholar
  58. 58.
    Wang HQ, Li HF (2014) A combined stochastic search and density functional theory study on the neutral and charged silicon-based clusters MSi6 (M = La, Ce, Yb and Lu). RSC Adv 4:29782–29793CrossRefGoogle Scholar
  59. 59.
    Li HF, Wang HQ (2014) Probing the stability of neutral and anionic transition-metal-doped golden cage nanoclusters: M@Au16 (M=Sc, Ti, V). Phys Chem Chem Phys 16:244–254CrossRefGoogle Scholar
  60. 60.
    Wang HQ, Li HF (2015) Structure identification of endohedral golden cage nanoclusters. RSC Adv 5:94685–94693CrossRefGoogle Scholar
  61. 61.
    Li HF, Wang HQ (2018) Stabilization of golden cages by encapsulation of a single transition metal atom. R Soc Open Sci 5:171019CrossRefGoogle Scholar
  62. 62.
    Wang HQ, Li HF, Kuang XY (2012) Stabilization of golden cages by encapsulation of a single transition metal atom. Phys Chem Chem Phys 14:5272–2583CrossRefGoogle Scholar
  63. 63.
    Wang HQ, Li HF (2012) Probing the structural and electronic properties of small vanadium dioxide clusters by density functional theory and comparison with experimental photoelectron spectroscopy. J Chem Phys 137:164304CrossRefGoogle Scholar
  64. 64.
    Pouchan C, Bégué D, Zhang DY (2004) Between geometry, stability, and polarizability: density functional theory studies of silicon clusters Sin (n=3-10). J Chem Phys 121:4628–4634CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Information Science and EngineeringHuaqiao UniversityXiamenChina
  2. 2.College of EngineeringHuaqiao UniversityQuanzhouChina

Personalised recommendations