Energy level gamut—a wide-angle lens to look at photoelectronic properties of diketopyrrolopyrrole-benzothiadiazole-based small molecules

  • Ali Ashtiani Abdi
  • Farahnaz NourmohammadianEmail author
  • Tayebeh AmeriEmail author
Original Paper


Demands in the field of molecular design for optimized bandgap and proper energy levels to obtain high efficiencies are growing progressively in organic electronics. In the present work, we designed a series of molecules based on diketopyrrolopyrrole (DPP) and benzothiadiazoles (BT). We also studied the efeect of the presence and position of the nitrogen atom as an effective heteroatom. Finally, we optimized the energy levels of the designed structures to find the most favorable donor properties along with fullerene and non-fullerene (NF) acceptors in bulk heterojunction (BHJ) solar cell systems. To shed new light on the electronic characteristics of the designed structures, we developed a correction gamut of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels. The gamut is a span that predicts the occurrence of practical HOMO or LUMO with high probability from density functional theory computations in the gas phase. The model was validated using experimental energy level values of a similar structure as reference material. The results obtained by the new pathway of combining the idea of energy level gamuts with the modified Scharber model for NF BHJ suggested that the designed structures can afford power conversion efficiencies (PCE) for NF-BHJ of 8.5–10.5%.

Graphical abstract

Improved approach for predicting power conversion efficiencies (PCE) of designed molecules


Organic photovoltaic Bulk heterojunction Diketopyrrolopyrrole Benzothiadiazole Non-fullerene Energy level gamut 


Supplementary material

894_2019_4110_MOESM1_ESM.docx (3.3 mb)
ESM 1 (DOCX 3379 kb)


  1. 1.
    Huang F, Yip HL, Cao Y (2015) Polymer photovoltaics: materials, physics and device engineering. Royal Society of Chemistry, LondonGoogle Scholar
  2. 2.
    Brabec C, Scherf U, Dyakonov V (2011) Organic photovoltaics: materials, device physics, and manufacturing technologies. Wiley, New YorkGoogle Scholar
  3. 3.
    Wang Q, Xie Y, Soltani-Kordshuli F, Eslamian M (2016) Progress in emerging solution-processed thin film solar cells–part I: polymer solar cells. Renew Sust Energ Rev 56:347–361CrossRefGoogle Scholar
  4. 4.
    Collins SD, Ran NA, Heiber MC, Nguyen TQ (2017) Small is powerful: recent progress in solution-processed small molecule solar cells. Adv Energy Mater 7: 1602242CrossRefGoogle Scholar
  5. 5.
    Meng L, Zhang Y, Wan X, Li C, Zhang X, Wang Y, Ke X, Xiao Z, Ding L, Xia R (2018) Organic and solution-processed tandem solar cells with 17.3% efficiency. Science 361:1094–1098PubMedCrossRefGoogle Scholar
  6. 6.
    An Q, Wang J, Zhang F (2019) Ternary polymer solar cells with alloyed donor achieving 14.13% efficiency and 78.4% fill factor. Nano Energy 60:768–774CrossRefGoogle Scholar
  7. 7.
    Fan B, Zhang D, Li M, Zhong W, Zeng Z, Ying L, Huang F, Cao Y (2019) Achieving over 16% efficiency for single-junction organic solar cells. Science China Chem:1–7Google Scholar
  8. 8.
    Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J (2017) Molecular optimization enables over 13% efficiency in organic solar cells. J Am Chem Soc 139:7148–7151. PubMedCrossRefGoogle Scholar
  9. 9.
    Huo Y, Zhang H-L, Zhan X (2019) Non-fullerene all-small-molecule organic solar cells. ACS Energy Lett 2:2717–2722Google Scholar
  10. 10.
    Heeger AJ (2014) 25th anniversary article: bulk heterojunction solar cells: understanding the mechanism of operation. Adv Mater 26:10–28PubMedCrossRefGoogle Scholar
  11. 11.
    Ameri T, Khoram P, Min J, Brabec CJ (2013) Organic ternary solar cells: a review. Adv Mater 25:4245–4266PubMedCrossRefGoogle Scholar
  12. 12.
    Ameri T, Li N, Brabec CJ (2013) Highly efficient organic tandem solar cells: a follow up review. Energy Environ Sci 6:2390–2413CrossRefGoogle Scholar
  13. 13.
    Elumalai NK, Uddin A (2016) Open circuit voltage of organic solar cells: an in-depth review. Energy Environ Sci 9:391–410CrossRefGoogle Scholar
  14. 14.
    Brabec CJ, Cravino A, Meissner D, Sariciftci NS, Fromherz T, Rispens MT, Sanchez L, Hummelen JC (2001) Origin of the open circuit voltage of plastic solar cells. Adv Funct Mater 11:374–380CrossRefGoogle Scholar
  15. 15.
    Poelking C, Tietze M, Elschner C, Olthof S, Hertel D, Baumeier B, Würthner F, Meerholz K, Leo K, Andrienko D (2015) Impact of mesoscale order on open-circuit voltage in organic solar cells. Nat Mater 14:434PubMedCrossRefGoogle Scholar
  16. 16.
    Bartesaghi D, del Carmen Pérez I, Kniepert J, Roland S, Turbiez M, Neher D, Koster LJA (2015) Competition between recombination and extraction of free charges determines the fill factor of organic solar cells. Nat Commun 6:7083Google Scholar
  17. 17.
    Mandoc MM, Veurman W, Koster LJA, de Boer B, Blom PW (2007) Origin of the reduced fill factor and photocurrent in MDMO-PPV: PCNEPV all-polymer solar cells. Adv Funct Mater 17:2167–2173CrossRefGoogle Scholar
  18. 18.
    Scharber MC (2016) On the efficiency limit of conjugated polymer: fullerene-based bulk heterojunction solar cells. Adv Mater 28:1994–2001PubMedCrossRefGoogle Scholar
  19. 19.
    He Z, Zhong C, Huang X, Wong WY, Wu H, Chen L, Su S, Cao Y (2011) Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells. Adv Mater 23:4636–4643PubMedCrossRefGoogle Scholar
  20. 20.
    Lu L, Zheng T, Wu Q, Schneider AM, Zhao D, Yu L (2015) Recent advances in bulk heterojunction polymer solar cells. Chem Rev 115:12666–12731PubMedCrossRefGoogle Scholar
  21. 21.
    Zhou H, Yang L, You W (2012) Rational design of high performance conjugated polymers for organic solar cells. Macromolecules 45:607–632CrossRefGoogle Scholar
  22. 22.
    Duan C, Huang F, Cao Y (2012) Recent development of push–pull conjugated polymers for bulk-heterojunction photovoltaics: rational design and fine tailoring of molecular structures. J Mater Chem 22:10416–10434CrossRefGoogle Scholar
  23. 23.
    Qu S, Tian H (2012) Diketopyrrolopyrrole (DPP)-based materials for organic photovoltaics. Chem Commun 48:3039–3051CrossRefGoogle Scholar
  24. 24.
    Li Y, Sonar P, Murphy L, Hong W (2013) High mobility diketopyrrolopyrrole (DPP)-based organic semiconductor materials for organic thin film transistors and photovoltaics. Energy Environ Sci 6:1684–1710CrossRefGoogle Scholar
  25. 25.
    Etxebarria I, Ajuria J, Pacios R (2015) Solution-processable polymeric solar cells: a review on materials, strategies and cell architectures to overcome 10%. Org Electron 19:34–60CrossRefGoogle Scholar
  26. 26.
    Liu X, Huang C, Shen W, He R, Li M (2016) Theoretical investigations on enhancing the performance of terminally diketopyrrolopyrrole-based small-molecular donors in organic solar cell applications. J Mol Model 22:15PubMedCrossRefGoogle Scholar
  27. 27.
    Lee JW, Choi YS, Jo WH (2012) Diketopyrrolopyrrole-based small molecules with simple structure for high V OC organic photovoltaics. Org Electron 13:3060–3066CrossRefGoogle Scholar
  28. 28.
    Po R, Bernardi A, Calabrese A, Carbonera C, Corso G, Pellegrino A (2014) From lab to fab: how must the polymer solar cell materials design change?–an industrial perspective. Energy Environ Sci 7:925–943CrossRefGoogle Scholar
  29. 29.
    Wang M, Hu X, Liu P, Li W, Gong X, Huang F, Cao Y (2011) Donor–acceptor conjugated polymer based on naphtho [1, 2-c: 5, 6-c] bis [1, 2, 5] thiadiazole for high-performance polymer solar cells. J Am Chem Soc 133:9638–9641PubMedCrossRefGoogle Scholar
  30. 30.
    Dong Y, Hu X, Duan C, Liu P, Liu S, Lan L, Chen D, Ying L, Su S, Gong X (2013) A series of new medium-bandgap conjugated polymers based on Naphtho [1, 2-c: 5, 6-c] bis (2-octyl-[1, 2, 3] triazole) for high-performance polymer solar cells. Adv Mater 25:3683–3688PubMedCrossRefGoogle Scholar
  31. 31.
    Hendsbee AD, Sun J-P, Rutledge LR, Hill IG, Welch GC (2014) Electron deficient diketopyrrolopyrrole dyes for organic electronics: synthesis by direct arylation, optoelectronic characterization, and charge carrier mobility. J Mater Chem A 2:4198–4207CrossRefGoogle Scholar
  32. 32.
    Tamayo AB, Tantiwiwat M, Walker B, Nguyen T-Q (2008) Design, synthesis, and self-assembly of oligothiophene derivatives with a diketopyrrolopyrrole core. J Phys Chem C 112:15543–15552CrossRefGoogle Scholar
  33. 33.
    Tamayo AB, Walker B, Nguyen T-Q (2008) A low band gap, solution processable oligothiophene with a diketopyrrolopyrrole core for use in organic solar cells. J Phys Chem C 112:11545–11551CrossRefGoogle Scholar
  34. 34.
    Coughlin JE, Zhugayevych A, Bakus RC, van der Poll TS, Welch GC, Teat SJ, Bazan GC, Tretiak S (2014) A combined experimental and theoretical study of conformational preferences of molecular semiconductors. J Phys Chem C 118:15610–15623CrossRefGoogle Scholar
  35. 35.
    Coughlin JE, Henson ZB, Welch GC, Bazan GC (2013) Design and synthesis of molecular donors for solution-processed high-efficiency organic solar cells. Acc Chem Res 47:257–270PubMedCrossRefGoogle Scholar
  36. 36.
    Cheng C, Geng H, Yi Y, Shuai Z (2017) Super-exchange-induced high performance charge transport in donor–acceptor copolymers. J Mater Chem C 5:3247–3253CrossRefGoogle Scholar
  37. 37.
    Sui M, Li S, Pan Q, Sun G, Geng Y (2017) Theoretical characterization on photoelectric properties of benzothiadiazole-and fluorene-based small molecule acceptor materials for the organic photovoltaics. J Mol Model 23:28PubMedCrossRefGoogle Scholar
  38. 38.
    Peng X, Shen W, Liu X, Zhang Y, Li M (2014) Theory study on the properties of thiadiazole polymer donors for organic solar cells. J Phys Org Chem 27:99–105CrossRefGoogle Scholar
  39. 39.
    Pandey L, Risko C, Norton JE, Brédas J-L (2012) Donor–acceptor copolymers of relevance for organic photovoltaics: a theoretical investigation of the impact of chemical structure modifications on the electronic and optical properties. Macromolecules 45:6405–6414CrossRefGoogle Scholar
  40. 40.
    Hou J, Inganäs O, Friend RH, Gao F (2018) Organic solar cells based on non-fullerene acceptors. Nat Mater 17:119PubMedCrossRefGoogle Scholar
  41. 41.
    Aspuru-Guzik A, Persson K (2018) Materials acceleration platform: accelerating advanced energy materials discovery by integrating high-throughput methods and artificial intelligence. Innovation Challenge 6, Mission Innovation.
  42. 42.
    Pyzer-Knapp EO, Suh C, Gómez-Bombarelli R, Aguilera-Iparraguirre J, Aspuru-Guzik A (2015) What is high-throughput virtual screening? A perspective from organic materials discovery. Annu Rev Mater Res 45:195–216CrossRefGoogle Scholar
  43. 43.
    Imamura Y, Tashiro M, Katouda M, Hada M (2017) Automatic high-throughput screening scheme for organic photovoltaics: estimating the orbital energies of polymers from oligomers and evaluating the photovoltaic characteristics. J Phys Chem C 121:28275–28286CrossRefGoogle Scholar
  44. 44.
    Jørgensen PB, Mesta M, Shil S, García Lastra JM, Jacobsen KW, Thygesen KS, Schmidt MN (2018) Machine learning-based screening of complex molecules for polymer solar cells. J Chem Phys 148:241735PubMedCrossRefGoogle Scholar
  45. 45.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363CrossRefGoogle Scholar
  46. 46.
    Bode BM, Gordon MS (1998) MacMolPlt: a graphical user interface for GAMESS. J Mol Graphics Modell 16:133–138CrossRefGoogle Scholar
  47. 47.
    Zhurko GA, Zhurko DA CHEMCRAFT 1.7 (build 382).
  48. 48.
    RDKit: Open-source cheminformatics. (accessed 17 May 2019)
  49. 49.
    Fligner MA, Verducci JS, Blower PE (2002) A modification of the Jaccard–Tanimoto similarity index for diverse selection of chemical compounds using binary strings. Technometrics 44:110–119CrossRefGoogle Scholar
  50. 50.
    Yong X, Zhang J (2011) A rational design strategy for donors in organic solar cells: the conjugated planar molecules possessing anisotropic multibranches and intramolecular charge transfer. J Mater Chem 21:11159–11166CrossRefGoogle Scholar
  51. 51.
    Blouin N, Michaud A, Gendron D, Wakim S, Blair E, Neagu-Plesu R, Belletête M, Durocher G, Tao Y, Leclerc M (2008) Toward a rational design of poly (2, 7-carbazole) derivatives for solar cells. J Am Chem Soc 130:732–742PubMedCrossRefGoogle Scholar
  52. 52.
    Gendron D, Leclerc M (2011) New conjugated polymers for plastic solar cells. Energy Environ Sci 4:1225–1237CrossRefGoogle Scholar
  53. 53.
    Walker B, Liu J, Kim C, Welch GC, Park JK, Lin J, Zalar P, Proctor CM, Seo JH, Bazan GC (2013) Optimization of energy levels by molecular design: evaluation of bis-diketopyrrolopyrrole molecular donor materials for bulk heterojunction solar cells. Energy Environ Sci 6:952–962CrossRefGoogle Scholar
  54. 54.
    Beaupré S, Belletête M, Durocher G, Leclerc M (2011) Rational Design of Poly(2,7-Carbazole) derivatives for photovoltaic applications. Macromol Theory Simul 20:13–18. CrossRefGoogle Scholar
  55. 55.
    Bérubé N, Gosselin V, Gaudreau J, Côté M (2013) Designing polymers for photovoltaic applications using ab initio calculations. J Phys Chem C 117:7964–7972CrossRefGoogle Scholar
  56. 56.
    Méndez-Hernández DD, Tarakeshwar P, Gust D, Moore TA, Moore AL, Mujica V (2013) Simple and accurate correlation of experimental redox potentials and DFT-calculated HOMO/LUMO energies of polycyclic aromatic hydrocarbons. J Mol Model 19:2845–2848PubMedCrossRefGoogle Scholar
  57. 57.
    Huang J, Zhang S, Jiang B, Chen Y, Zhang X, Fan Z, Yu D, Lin Z, Yao J, Zhan C (2016) Terminal moiety-driven electrical performance of asymmetric small-molecule-based organic solar cells. J Mater Chem A 4:15688–15697CrossRefGoogle Scholar
  58. 58.
    Ji C, Yin L, Wang L, Jia T, Meng S, Sun Y, Li Y (2014) Linkage effects of linear D–π–A–π–D type diketopyrrolopyrrole-triphenylamine based solution-processable organic small molecule photovoltaic materials. J Mater Chem C 2:4019–4026CrossRefGoogle Scholar
  59. 59.
    Bharath D, Chithiravel S, Sasikumar M, Chereddy NR, Shanigaram B, Bhanuprakash K, Krishnamoorthy K, Rao VJ (2015) A detailed study on the thermal, photo-physical and electrochemical properties and OFET applications of D–π–A–π–D structured unsymmetrical diketopyrrolopyrrole materials. RSC Adv 5:94859–94865CrossRefGoogle Scholar
  60. 60.
    Liu X, Sun Y, Hsu BB, Lorbach A, Qi L, Heeger AJ, Bazan GC (2014) Design and properties of intermediate-sized narrow band-gap conjugated molecules relevant to solution-processed organic solar cells. J Am Chem Soc 136:5697–5708PubMedCrossRefGoogle Scholar
  61. 61.
    You J, Dou L, Yoshimura K, Kato T, Ohya K, Moriarty T, Emery K, Chen C-C, Gao J, Li G (2013) A polymer tandem solar cell with 10.6% power conversion efficiency. Nat Commun 4:1446PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Liu J, Walker B, Tamayo A, Zhang Y, Nguyen TQ (2013) Effects of heteroatom substitutions on the crystal structure, film formation, and optoelectronic properties of Diketopyrrolopyrrole-based materials. Adv Funct Mater 23:47–56CrossRefGoogle Scholar
  63. 63.
    Scharber MC, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec CJ (2006) Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency. Adv Mater 18:789–794CrossRefGoogle Scholar
  64. 64.
    Sworakowski J, Janus K (2017) On the reliability of determination of energies of HOMO levels in organic semiconducting polymers from electrochemical measurements. Org Electron 48:46–52CrossRefGoogle Scholar
  65. 65.
    Wang C, Ouyang L, Xu X, Braun S, Liu X, Fahlman M (2018) Relationship of ionization potential and oxidation potential of organic semiconductor films used in photovoltaics. Solar RRL 2:1800122CrossRefGoogle Scholar
  66. 66.
    Cardona CM, Li W, Kaifer AE, Stockdale D, Bazan GC (2011) Electrochemical considerations for determining absolute frontier orbital energy levels of conjugated polymers for solar cell applications. Adv Mater 23:2367–2371PubMedCrossRefGoogle Scholar
  67. 67.
    Bajusz D, Rácz A, Héberger K (2015) Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? J Cheminf 7:20CrossRefGoogle Scholar
  68. 68.
    Zhang B, Vogt M, Maggiora GM, Bajorath J (2015) Design of chemical space networks using a Tanimoto similarity variant based upon maximum common substructures. J Comput Aided Mol Des 29:937–950PubMedCrossRefGoogle Scholar
  69. 69.
    Fahim ZME, Bouzzine SM, Youssef AA, Bouachrine M, Hamidi M (2018) Ground state geometries, UV/Vis absorption spectra and charge transfer properties of triphenylamine-thiophenes based dyes for DSSCs: a TD-DFT benchmark study. Comput Theor Chem 1125:39–48CrossRefGoogle Scholar
  70. 70.
    Hutchison GR, Ratner MA, Marks TJ (2005) Electronic structure and band gaps in cationic heterocyclic oligomers. Multidimensional analysis of the interplay of heteroatoms, substituents, molecular length, and charge on redox and transparency characteristics. J Phys Chem B 109:3126–3138PubMedCrossRefGoogle Scholar
  71. 71.
    Kovalenko A, Honová J, Vala M, Luňák S, Fekete L, Horáková P, Dokládalová L, Kubáč L, Weiter M (2015) Effect of the side chains and anode material on thermal stability and performance of bulk-heterojunction solar cells using DPP (TBFu) 2 derivatives as donor materials. Int J Photoenergy 2015Google Scholar
  72. 72.
    Sze SM, Ng KK (2007) Physics of semiconductor devices. Wiley, Hoboken, NJGoogle Scholar
  73. 73.
    Brédas J-L, Beljonne D, Coropceanu V, Cornil J (2004) Charge-transfer and energy-transfer processes in π-conjugated oligomers and polymers: a molecular picture. Chem Rev 104:4971–5004PubMedCrossRefGoogle Scholar
  74. 74.
    Cheng P, Li G, Zhan X, Yang Y (2018) Next-generation organic photovoltaics based on non-fullerene acceptors. Nat Photonics 12:131CrossRefGoogle Scholar
  75. 75.
    Ha HM, Eun PG, Long PD, Tung NT, Van NT, Hong PS, Ju CM, Hoon CD (2018) High-performing random terpolymer-based nonfullerene polymer solar cells fabricated using solvent additive-free as-cast blend films. J Polym Sci, Part A: Polym Chem 56:1528–1535. CrossRefGoogle Scholar
  76. 76.
    Zhang J, Jiang K, Yang G, Ma T, Liu J, Li Z, Lai JYL, Ma W, Yan H (2017) Tuning energy levels without negatively affecting morphology: a promising approach to achieving optimal energetic match and efficient nonfullerene polymer solar cells. Adv Energy Mater 7:1602119CrossRefGoogle Scholar
  77. 77.
    Chen S, Liu Y, Zhang L, Chow PC, Wang Z, Zhang G, Ma W, Yan H (2017) A wide-bandgap donor polymer for highly efficient non-fullerene organic solar cells with a small voltage loss. J Am Chem Soc 139:6298–6301PubMedCrossRefGoogle Scholar
  78. 78.
    Cheng P, Zhang M, Lau TK, Wu Y, Jia B, Wang J, Yan C, Qin M, Lu X, Zhan X (2017) Realizing small energy loss of 0.55 eV, high open-circuit voltage> 1 V and high efficiency> 10% in fullerene-free polymer solar cells via energy driver. Adv Mater 29Google Scholar
  79. 79.
    Bin H, Yang Y, Zhang Z-G, Ye L, Ghasemi M, Chen S, Zhang Y, Zhang C, Sun C, Xue L (2017) 9.73% efficiency nonfullerene all organic small molecule solar cells with absorption-complementary donor and acceptor. J Am Chem Soc 139:5085–5094PubMedCrossRefGoogle Scholar
  80. 80.
    Veldman D, Meskers SC, Janssen RA (2009) The energy of charge-transfer states in electron donor–acceptor blends: insight into the energy losses in organic solar cells. Adv Funct Mater 19:1939–1948CrossRefGoogle Scholar
  81. 81.
    Credgington D, Durrant JR (2012) Insights from transient optoelectronic analyses on the open-circuit voltage of organic solar cells. J Phys Chem Lett 3:1465–1478PubMedCrossRefGoogle Scholar
  82. 82.
    ASTM (2012) G173–03(2012), standard tables for reference solar spectral irradiances: direct Normal and hemispherical on 37° tilted surface. ASTM International, West Conshohocken, PA Google Scholar
  83. 83.
    Huo Y, Zhu J, Wang X-Z, Yan C, Chai Y-F, Chen Z-Z, Zhan X, Zhang H-L (2018) Small molecule donors based on benzodithiophene and diketopyrrolopyrrole compatible with both fullerene and non-fullerene acceptors. J Mater Chem C 6:5843–5848CrossRefGoogle Scholar
  84. 84.
    Li N, McCulloch I, Brabec CJ (2018) Analyzing the efficiency, stability and cost potential for fullerene-free organic photovoltaics in one figure of merit. Energy Environ Sci 11:1355–1361 CrossRefGoogle Scholar
  85. 85.
    Ashtiani Abdi A, Nourmohammadian F, Mohammadi Y, Saeb MR (2019) Add-on for high throughput screening in material discovery for organic electronics: “tagging” molecules to address the device considerations. Prog Color Colorants Coatings 12:107–120Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Organic ColorantsInstitute for Color Science and TechnologyTehranIran
  2. 2.Institute Materials for Electronics and Energy Technology (i-MEET)Friedrich-Alexander-University Erlangen-NurembergErlangenGermany
  3. 3.Center of Excellence for Color Science and TechnologyTehranIran
  4. 4.Department of Chemistry, Chair of Physical ChemistryUniversity of Munich (LMU)MunichGermany

Personalised recommendations