Rotaxane and pseudo-rotaxane molecules from molecular wires. Theoretical description

  • Roberto SalcedoEmail author
  • Citlalli Rios
  • Lioudmila Fomina
  • Javier Ibarra
Original Paper


Some rotaxane molecules were designed, and their electronic capabilities were studied by means of DFT calculations. The original molecular wire consists of an iron complex that comprises aromatic substituents that constitute linear chains, and this system is complemented by the addition of fullerene C60 unities at both extremes of the chain, which act as the stoppers of the chain. Another modification was to add a link that gives way to the mechanical bond; this link is a square molecule of bis-pyrydyl-pyridinium tetraion. An interesting effect was observed as a result of these modifications; the conductivity of the systems rises with the first substitution and even more with the second in such a way that the original semiconductor material changes to give a conductor one.


Molecular wire [n]rotaxane] Semiconductors Theoretical calculations Mechanical bond 



Authors would like to acknowledge Oralia L Jiménez A., María Teresa Vázquez, Alejandro Pompa, Alberto López-Vivas and Caín González for their technical support. The financial support of projects DGAPA PAPIIT IN203816 and RN203816 is also recognized.


  1. 1.
    Fukui K, Yonezawa T, Shingu H (1952) A molecular orbital theory of reactivity in aromatic hydrocarbons. J Chem Phys 20:722–725CrossRefGoogle Scholar
  2. 2.
    Marcus RA (1964) Chemical and electrochemical electron transfer theory. Annu Rev Phys Chem 15:155–196CrossRefGoogle Scholar
  3. 3.
    Closs GL, Miller JR (1988) Intra-molecular long distance electron transfer in organic molecules. Science 240:440–447CrossRefGoogle Scholar
  4. 4.
    Aviram A, Ratner MA (1974) Molecular rectifiers. Chem Phys Lett 29:277–283CrossRefGoogle Scholar
  5. 5.
    Arrhenius TS, Blanchard-Desce M, Dvolaitzky M, Lehn JM (1986) Molecular devices: caroviologens as an approach to molecular wires-synthesis and incorporation into vesicle membranes. Proc Natl Acad Sci U S A 83:5355–5359CrossRefGoogle Scholar
  6. 6.
    Grozema FC, Siebbeles LDA (2011) Introduction: molecular electronics and molecular wires. Charge and exciton transport through molecular wires. Wiley-VCH, WeinheimGoogle Scholar
  7. 7.
    Joachim C, Gimzewski JK, Aviram A (2000) Electronics using hybrid molecular and mono-molecular devices. Nature 408:541–548CrossRefGoogle Scholar
  8. 8.
    Carrol LR, Gorman CB (2002) The genesis of molecular electronics. Angew Chem Int Ed 41:4378–4400CrossRefGoogle Scholar
  9. 9.
    Feynman RP (1960) There’s plenty of room at the bottom. Eng Sci 23:22–36Google Scholar
  10. 10.
    Wang S, Shan Z, Huang H (2017) The mechanical properties of nano-wires. Adv Sci 4:1600332CrossRefGoogle Scholar
  11. 11.
    Appel D (2002) Wired for success. Nature 419:553–555CrossRefGoogle Scholar
  12. 12.
    Tanaka Y, Kiguchi M, Munetaka A (2017) Inorganic and organometallic molecular wires for single molecule devices. Chem Eur J 23:4741–4749CrossRefGoogle Scholar
  13. 13.
    Van Dongen SFM, Cantekin S, Elemans JAAW, Rowan AE, Nolte RJM (2014) Functional interlocked systems. Chem Soc Rev 43:99–112CrossRefGoogle Scholar
  14. 14.
    Gil-Ramírez G, Leigh DA, Stephens AJ (2015) Catenanes, fifty years of molecular links. Angew Chem Int Ed Eng 54:6110–6150CrossRefGoogle Scholar
  15. 15.
    McConnell AJ, Wood CS, Neelakandan P, Nitschke JR (2015) Stimuli-responsive metal-ligand assemblies. Chem Rev 115:7729–7793CrossRefGoogle Scholar
  16. 16.
    Kottas GS, Clarke LI, Horinek D, Michl J (2005) Artificial molecular rotors. Chem Rev 105:1281–1376CrossRefGoogle Scholar
  17. 17.
    Salcedo R, Monroy O, Ruiz-Espinoza A, Fomina L (2017) Simulation of [2]rotaxane and [2]catenane compounds containing fullerene fragments. Influence of the fullerene moiety. Comp Theo Chem 1102:22–29CrossRefGoogle Scholar
  18. 18.
    Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100CrossRefGoogle Scholar
  19. 19.
    Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244–13249CrossRefGoogle Scholar
  20. 20.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr., Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R (2016) Gaussian 16, revision A.03. Gaussian, Inc., WallingfordGoogle Scholar
  21. 21.
    Kaliginedi V, Rudnev AV, Moreno-García P, Baghernejad M, Huang C, Hong W, Wandlowski T (2014) Promising anchoring groups for single-molecule conductance measurements. Phys Chem Chem Phys 16:23529–23539CrossRefGoogle Scholar
  22. 22.
    Lissel F, Schwarz F, Blacque O, Riel H, Lörtscer E, Venkatesan K, Berke H (2014) Organometallic single-molecule electronics: tuning electron transport through X(diphosphine)2FeC4Fe(diphosphine)2X building blocks by varying the Fe−X−Au anchoring scheme from coordinative to covalent. J Am Chem Soc 136:14560–14569CrossRefGoogle Scholar
  23. 23.
    Martin CA, Ding D, Sorensen JK, Bjornholm T, Ruitenbeek, van der Zant HS (2008) Fullerene-based anchoring groups for molecular electronics. J Am Chem Soc 130:13198–13199CrossRefGoogle Scholar
  24. 24.
    Kaur RP, Engles D (2018) Transport in a fullerene terminated aromatic molecular device. J Sci: Adv Mat Dev 3:206–212Google Scholar
  25. 25.
    Fu H, Shao X, Chipot C, Cai W (2017) The lubricating role of water in shuttling of rotaxanes. Chem Sci 8:5087–5094Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto de Investigaciones en MaterialesUNAMMexico CityMexico

Personalised recommendations