Advertisement

First principles investigations of the structural, elastic, vibrational, and thermodynamic properties of TiMg2O4 oxide spinels: cubic and tetragonal phases

  • A. K. KushwahaEmail author
  • S. Akbudak
  • G. Uğur
  • Ş. Uğur
Original Paper
  • 184 Downloads

Abstract

In the present study ab initio methology under density functional theory with generalized gradient approximation is used to study the structural, elastic, and vibrational properties of TiMg2O4 with cubic and tetragonal phases with space groups (Fd\( \overline{3} \)m) and P4_122, respectively. The present study shows that the studied compound TiMg2O4 is mechanically stable in both phases. Both phases have ductile nature and strong anisotropic properties, and it is also observed that the tetragonal phase has more anisotropic properties compared to the cubic phase. Obtained structural parameters are in good agreement with related literature.

Keywords

Spinels Tetragonal Ab initio Density-functional theory 

Notes

References

  1. 1.
    Höök M, Tang X (2013) Depletion of fossil fuels and anthropogenic climate change—a review. Energy Policy 52:797–809CrossRefGoogle Scholar
  2. 2.
    Lazkano I, Nøstbakken L, Pelli M (2017) From fossil fuels to renewables: the role of electricity storage. Eur Econ Rev 99:113–129CrossRefGoogle Scholar
  3. 3.
    Li W, Dolocan A, Oh P, Celio H, Park S, Cho J, Manthiram A (2017) Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries. Nat Commun 8:14589CrossRefGoogle Scholar
  4. 4.
    Blomgren GE (2017) The development and future of lithium ion batteries. J Electrochem Soc 164:A5019–A5025CrossRefGoogle Scholar
  5. 5.
    Scrosati B, Hassoun J, Sun YK (2011) Lithium-ion batteries. A look into the future. Energy Environ Sci 4:3287–3295CrossRefGoogle Scholar
  6. 6.
    Dyer DK (2002) J Power Sources 106:31–34CrossRefGoogle Scholar
  7. 7.
    Bashash S, Moura SJ, Forman JC, Fathy HK (2011) J Power Sources 196:541–549CrossRefGoogle Scholar
  8. 8.
    Bates JB, Dudney NJ, Neudecker B, Ueda A, Evans CD (2000) Solid State Ionics 135:33–45CrossRefGoogle Scholar
  9. 9.
    Whittingham MS (2004) Chem Rev 104:4271–4302CrossRefGoogle Scholar
  10. 10.
    Khomenko V, Piñero ER, Béguin F (2008) J Power Sources 177:643–651CrossRefGoogle Scholar
  11. 11.
    Sakaebe H, Matsumoto H (2003) Electrochem Commun 5:594–598CrossRefGoogle Scholar
  12. 12.
    Roberts AD, Li X, Zhang H (2014) Chem Soc Rev 43:4341–4356CrossRefGoogle Scholar
  13. 13.
    Clément RJ, Bruce PG, Grey CP (2015) J Electrochem Soc 162:A2589–A2604CrossRefGoogle Scholar
  14. 14.
    Ogasawara T, Débart A, Holzapfel M, Novák P, Bruce PG (2006) J Am Chem Soc 128:1390–1393CrossRefGoogle Scholar
  15. 15.
    Desilvestro J, Haas O (1990) J Electrochem Soc 137:5C–22CCrossRefGoogle Scholar
  16. 16.
    Ammundsen B, Paulsen J (2001) Adv Mater 13:943–956CrossRefGoogle Scholar
  17. 17.
    Gong Y, Ding W, Li Z, Su R, Zhang X, Wang J, Zhou J, Wang Z, Gao Y, Li S, Guan P, Wei Z, Sun C (2018) ACS Catal 8:4082–4090CrossRefGoogle Scholar
  18. 18.
    Patoux S, Daniel L, Bourbon C, Lignier H, Pagano C, Cras FL, Jouanneau S, Martinet S (2009) J Power Sources 189:344–352CrossRefGoogle Scholar
  19. 19.
    Okamoto S, Ichitsubo T, Kawaguchi T, Kumagai Y, Oba F, Yagi S, Shimokawa K, Goto N, Do T, Matsubara E (2015) Adv Sci 2:1500072CrossRefGoogle Scholar
  20. 20.
    Robertson AD, Trevino L, Tukamoto H, Irvine JTS (1999) J Power Sources 81:352–357CrossRefGoogle Scholar
  21. 21.
    Walsh A, Wei SH, Yan Y, Al-Jassim MM, Turner JA (2007) Phys Rev B 76:165119CrossRefGoogle Scholar
  22. 22.
    Akbudak S, Kushwaha AK, Ugur G, Ugur Ş, Ocak HY (2018) Ceram Int 44:310–316CrossRefGoogle Scholar
  23. 23.
    Boumaza S, Boudjemaa A, Bouguelia A, Bouarab R, Trari M (2010) Appl Energy 87:2230–2236CrossRefGoogle Scholar
  24. 24.
    Anchieta CG, Salleta D, Folettoa EL, Da Silva SS, Chiavone-Filho O, Do Nascimento CAO (2014) Ceram Int 40:4173–4178CrossRefGoogle Scholar
  25. 25.
    Stoica M, Lo CS (2014) New J Phys 16:055011CrossRefGoogle Scholar
  26. 26.
    Felser C, Fecher GH, Balke B (2007) Angew Chem Int Ed 46:668–699CrossRefGoogle Scholar
  27. 27.
    Santos-Carballal D, Roldan A, Grau-Crespo R, de Leeuw NH (2015) Phys Rev B 91:195106CrossRefGoogle Scholar
  28. 28.
    Caracas R, Banigan EJ (2009) Phys Earth Planet Inter 174:113–121CrossRefGoogle Scholar
  29. 29.
    Abbas SA, Rashid M, Faridi MA, Saddique MB, Mahmood A, Ramay SM (2018) J Phys Chem Solids 113:157–163CrossRefGoogle Scholar
  30. 30.
    Xu XL, Chen ZH, Li Y, Chen WK, Li JQ (2009) Surf Sci 603:653–658CrossRefGoogle Scholar
  31. 31.
    Bouhemadou A, Khenata R (2006) Phys Lett A 360:339–343CrossRefGoogle Scholar
  32. 32.
    Bouhemadou A, Khenata R, Zerarga F (2007) Comput Mater Sci 39:709–712CrossRefGoogle Scholar
  33. 33.
    Karazhanov SZ, Ravindrany P (2010) J Am Ceram Soc 93:3335–3341CrossRefGoogle Scholar
  34. 34.
    Chen J, Wu X, Selloni A (2011) Phys Rev B 83:245204CrossRefGoogle Scholar
  35. 35.
    Sampath SK, Kanhere DG, Pandey R (1999) Phys. Condens Matter 11:3635–3644CrossRefGoogle Scholar
  36. 36.
    Yan W, Bian W, Jin C, Tian JH, Yang R (2015) Electrochim Acta 177:65–72CrossRefGoogle Scholar
  37. 37.
    Hu J, Zhao W, Hu R, Chang G, Li C, Wang L (2014) Mater Res Bull 57:268–273CrossRefGoogle Scholar
  38. 38.
    Han H, Park KR, Hong YR, Shim K, Mhin S (2018) J Alloys Compd 732:486–490CrossRefGoogle Scholar
  39. 39.
    Brik MG, Suchocki A, Kamińska A (2014) Inorg Chem 53:5088–5099CrossRefGoogle Scholar
  40. 40.
    Ottonelo G (1986) Phys Chem Miner 13:79–90CrossRefGoogle Scholar
  41. 41.
    Kresse G, Hafner J (1993) Phys Rev B 48:13115CrossRefGoogle Scholar
  42. 42.
    Kresse G, Furthmuller J (1996) Phys Rev B 54:11169CrossRefGoogle Scholar
  43. 43.
    Blöchl PE (1994) Phys Rev B 50:17953CrossRefGoogle Scholar
  44. 44.
    Perdew JP, Zunger A (1981) Phys Rev B 23:5048CrossRefGoogle Scholar
  45. 45.
    Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188CrossRefGoogle Scholar
  46. 46.
    Blöchl PE, Jepsen O, Andersen OK (1994) Phys Rev B 49:16223CrossRefGoogle Scholar
  47. 47.
    Nielsen H, Martin RM (1983) Phys Rev Lett 50:697CrossRefGoogle Scholar
  48. 48.
    Parlinski K, Li ZQ, Kawazoe Y (1997) Phys Rev Lett 78:4063CrossRefGoogle Scholar
  49. 49.
    Born MH (1988) Dynamical theory of crystal lattices. Oxford University, OxfordGoogle Scholar
  50. 50.
    Voigt W (1928) Lehrbuch der Kristallphysik. Taubner, LeipzigGoogle Scholar
  51. 51.
    Reuss A (1929) Z Angew Math Mech 9:55CrossRefGoogle Scholar
  52. 52.
    Hill R (1952) Proc Phys Soc, London, Sect A 65:349CrossRefGoogle Scholar
  53. 53.
    Pugh SF (1954) Philos Mag 45:823CrossRefGoogle Scholar
  54. 54.
    Ravindran P, Fast L, Korzhavyi PA, Johansson B (1998) J Appl Phys 84:4891CrossRefGoogle Scholar
  55. 55.
    Ranganathan SI, Ostoja-Starzewski M (2008) Phys Rev Lett 101:055504CrossRefGoogle Scholar
  56. 56.
    Anderson OL (1963) J Phys Chem Solids 24:909CrossRefGoogle Scholar
  57. 57.
    Schreiber E, Anderson OL, Soga N (1973) Elastic constants and their measurements. McGraw-Hill, New YorkGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • A. K. Kushwaha
    • 1
    Email author
  • S. Akbudak
    • 2
  • G. Uğur
    • 3
  • Ş. Uğur
    • 3
  1. 1.Department of PhysicsK.N. Govt. P.G. CollegeBhadohiIndia
  2. 2.Department of Physics, Faculty of Arts and SciencesAdiyaman UniversityAdiyamanTurkey
  3. 3.Department of Physics, Faculty of ScienceGazi UniversityAnkaraTurkey

Personalised recommendations