Advertisement

Acidity of the chlorinated phenols: DFT study and experiential affirmation

  • Somayyeh KheirjouEmail author
  • Gholamhassan Imanzadeh
  • Havva Rezaei
  • Nasimeh Safari
Original Paper
  • 40 Downloads

Abstract

A quantum mechanical density functional theory (DFT) was successfully developed for the estimation of pKa values of chlorinated phenols in aqueous solution with a precision of 0.9 pKa units. The MP2/6-311++G(d,p)//B3LYP/6-31+G(d) level of theory was used for the gas phase calculation. For computation in the solution phase and to calculate the energy difference of the acid–base, the polarized continuum model (PCM) at the HF/6-31G(d,p) level was used. The pKa value was computed for each involved species using pentachlorophenol (PCP) as a reference molecule. Natural bond orbital (NBO) analysis considering the natural resonance theory (NRT) was carried out on an optimized geometry of studied compounds to give information about the nature of bonds.

Graphical abstract

Chlorinated phenols.

Keywords

Chlorinated phenols DFT calculation Acidity 

Notes

Acknowledgments

Support from University of Mohaghegh Ardabili is gratefully acknowledged.

References

  1. 1.
    Ahlborg UG, Thunberg TM (1980) Chlorinated phenols occurrence, toxicity, metabolism, and environmental impact. CRC Crit Rev Toxicol 7:1CrossRefGoogle Scholar
  2. 2.
    Shields GC, Seybold PG (2014) Computational approaches for the prediction of pKa values. Taylor & Francis, AbingdonGoogle Scholar
  3. 3.
    Alongi K, Shields G (2010) Theoretical calculations of acid dissociation constants: a review article. Annu Rep Comput Chem 6:113CrossRefGoogle Scholar
  4. 4.
    Rossi RD (2013) What does the acid ionization constant tell you? An organic chemistry student guide. J Chem Educ 90:183CrossRefGoogle Scholar
  5. 5.
    Chaminade P, Baillet A, Ferrier D (1993) Efficient determination of the pKa values of six chlorinated phenols by reversed-phase liquid chromatography. Anal Chim Acta 280:93CrossRefGoogle Scholar
  6. 6.
    Hwang S, Jang YH, Chung DS (2005) Gas phase proton affinity, basicity, and pK values for nitrogen containing heterocyclic aromatic compounds. Bull Kor Chem Soc 26:585CrossRefGoogle Scholar
  7. 7.
    Busch MS, Knapp EW (2004) Accurate pK determination for a heterogeneous group of organic molecules. Chem Phys Chem 5:1513CrossRefGoogle Scholar
  8. 8.
    Kheirjou S, Abedin A, Fattahi A, Hashemi MM (2014) Excellent response of the DFT study to the calculations of accurate relative pKa value of different benzo-substituted quinuclidines. Comput Theor Chem 1027:191CrossRefGoogle Scholar
  9. 9.
    Kheirjou S, Mehrpajouh S, Fattahi A (2013) Drastic influence of boron atom on the acidity of alcohol in both gas phase and solution phase, a DFT study. J Theor Comput Chem 12:1250103CrossRefGoogle Scholar
  10. 10.
    Kheirjou S, Abedin A, Fattahi A (2012) Theoretical descriptors response to the calculations of the relative pK a values of some boronic acids in aqueous solution: a DFT study. Comput Theor Chem 1000:1CrossRefGoogle Scholar
  11. 11.
    Casasnovas R, Ortega-Castro J, Frau J, Donoso J, Munoz F (2014) Theoretical pKa calculations with continuum model solvents, alternative protocols to thermodynamic cycles. Int J Quantum Chem 114:1350CrossRefGoogle Scholar
  12. 12.
    Brown TN, Mora-Diez N (2006) Computational determination of aqueous pKa values of protonated benzimidazoles (part 1). J Phys Chem B 110:9270CrossRefGoogle Scholar
  13. 13.
    Namazian M, Halvani S (2006) Calculations of pKa values of carboxylic acids in aqueous solution using density functional theory. J Chem Thermodyn 38:1495CrossRefGoogle Scholar
  14. 14.
    Namazian M, Siahrostami S, Noorbala MR, Coote ML (2006) Calculation of two-electron reduction potentials for some quinine derivatives in aqueous solution using Møller–Plesset perturbation theory. J Mol Struc (THEOCHEM) 759:245CrossRefGoogle Scholar
  15. 15.
    Namazian M, Kalantary-Fotooh F, Noorbala MR, Searles DJ, Coote ML (2006) Møller–Plesset perturbation theory calculations of the pKa values for a range of carboxylic acids. J Mol Struc THEOCHEM 758:275CrossRefGoogle Scholar
  16. 16.
    Freitas AA, Shimizu K, Dias LG, Quina FH (2007) A computational study of substituted flavylium salts and their quinonoidal conjugate bases: S0→S1 electronic transition, absolute pKa and reduction potential calculations by DFT and semiempirical methods. J Braz Chem Soc 18:1537CrossRefGoogle Scholar
  17. 17.
    Bolton PD, Ellis J, Hall FM (1970) Additive substituent effects on the thermodynamic functions of proton ionization processes. Part 111. Phenols with adjacent methyl and chloro-substituents. J Chem Soc B.  https://doi.org/10.1039/J29700001252
  18. 18.
    Fischer A, Leary GJ, Topsom RD, Vaughan J (1967) Ionic dissociation of 4-substituted 2,6-dichlorophenols. J Chem Soc B.  https://doi.org/10.1039/J29670000686
  19. 19.
    Fischer A, Leary GJ, Topsom RD, Vaughan J (1966) Ionic dissociation of 4-substituted 2.6-dimethylphenols. J Chem Soc B.  https://doi.org/10.1039/J29660000782
  20. 20.
    Gruber C, Buss V (1989) Quantum-mechanically calculated properties for the development of quantitative structure-activity relationships (QSAR'S). pKA-values of phenols and aromatic and aliphatic carboxylic acids. Chemosphere 19:1595CrossRefGoogle Scholar
  21. 21.
    Schuurmann G (1996) Modelling pK a of carboxylic acids and chlorinated phenols. Quant Struct-Act Relat 15:121CrossRefGoogle Scholar
  22. 22.
    Hanai T, Koizumi K, Kinoshita T (2000) Prediction of retention factors of phenolic and nitrogen-containing compounds in reversed-phase liquid chromatography based on logp and pka obtained by computationa chemical calculation. J Liq Chromatogr Relat Technol 23:363CrossRefGoogle Scholar
  23. 23.
    Gross KC, Seybold PG (2001) Substituent effects on the physical properties and pK a of phenol. Int J Quantum Chem 85:569CrossRefGoogle Scholar
  24. 24.
    Matthew DL, Kevin CG, Paul GS, Steven F, George CS (2002) Absolute pK a determinations for substituted phenols. J Am Chem Soc 124:6421CrossRefGoogle Scholar
  25. 25.
    Ding F, Smith JM, Wang H (2009) First-principles calculation of pKa values for organic acids in nonaqueous solution. J Organomet Chem 74:2679CrossRefGoogle Scholar
  26. 26.
    Yao F, Lei L, Rui-Qiong L, Rui L, Qing-Xiang G (2004) First-principle predictions of absolute pKa’s of organic acids in dimethyl sulfoxide solution. J Am Chem Soc 126:814CrossRefGoogle Scholar
  27. 27.
    Wavefunction, Inc. (2019) Spartan ‘06V102’. Wavefunction, Inc., IrvineGoogle Scholar
  28. 28.
    Pakiari AH, Jamshidi Z (2008) Interaction of coinage metal clusters with chalcogen dihydrides. J Phys Chem A 112:7969CrossRefGoogle Scholar
  29. 29.
    Burk P, Koppel IA, Leito I, Travnikova O (2000) Critical test of performance of B3LYP functional for prediction of gas-phase acidities and basicities. J Chem Phys Lett 323:482CrossRefGoogle Scholar
  30. 30.
    Namazian M, Heidary H (2003) Ab initio calculations of pKa values of some organic acids in aqueous solution. J Mol Struct 620:257CrossRefGoogle Scholar
  31. 31.
    Josefredo R, Plliego JR (2003) Thermodynamic cycles and the calculation of pKa. Chem Phys Lett 367:145CrossRefGoogle Scholar
  32. 32.
    Poliak P (2014) The DFT calculations of pKa values of the cationic acids of aniline and pyridine derivatives in common solvents. Acta Chim Slov 7:25CrossRefGoogle Scholar
  33. 33.
    Rodrigo C, David F, OC J, Juan F, Josefa D, Francisco M (2011) Avoiding gas-phase calculations in theoretical pKa predictions. Theor Chem Accounts 130:1CrossRefGoogle Scholar
  34. 34.
    Sebastián S, Rodrigo C, Francisco M, Juan F (2016) Isodesmic reaction for accurate theoretical pKa calculations of amino acids and peptides. Phys Chem Chem Phys 18:11202CrossRefGoogle Scholar
  35. 35.
    Torssell K, McLendon JH, Somers GF (1958) Chemistry of arylboric acids. VIII. The relationship between physico-chemiscal properties and activity in plants. Acta Chem Scand 12:1373CrossRefGoogle Scholar
  36. 36.
    Hollingsworth CA, Seybold PG, Hadad CM (2002) Substituent effects on the electronic structure and pKa of benzoic acid. Int J Quantum Chem 90:1396CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Somayyeh Kheirjou
    • 1
    Email author
  • Gholamhassan Imanzadeh
    • 1
  • Havva Rezaei
    • 1
  • Nasimeh Safari
    • 1
  1. 1.Department of ScienceUniversity of Mohaghegh ArdabiliArdabilIran

Personalised recommendations