Advertisement

Triel bonds in RZH2···NH3: hybridization, solvation, and substitution

  • Zhefeng Xu
  • Yan LiEmail author
Original Paper

Abstract

The influence of hybridization, substitution, and solvation on the triel bond has been investigated in the complexes of RZH2···NH3 (Z = B and Al). The magnitude of the π-hole on the triel atom is related to the nature of the Z atom and the hybridization of R. CH3BH2 has the largest π-hole among RBH2, while for RAlH2 the largest π-hole is found in CH≡CAlH2. The interaction energy is partly inconsistent with the magnitude of the π-hole on the triel atom and the orbital interaction from the N lone pair of NH3 into the empty p orbital of the triel atom. The strongest B···N triel bond is found in CH≡CBH2···NH3, while the weakest Al···N triel bond is in CH3AlH2···NH3. The strength of the triel bond is increased in solvents, and its enhancement is prominent with the increase of solvent polarity. Solvents also change the nature of the Al···N triel bond from an electrostatic interaction to a partially covalent one. The F substituent in the triel donor strengthens the triel bond, depending on the substitution position and number.

Graphical Abstract

The π-hole triel bonded complexes between RZH2 (Z =B and Al) and NH3 have been investigated. We focused on the effects of hybridization, solvent, and substitution on the strength and nature of π-hole triel bond

Keywords

Triel bonding Hybridization Substituents Solvents 

Notes

References

  1. 1.
    Schneider HJ (2009) Angew Chem Int Ed 48:3924–3977CrossRefGoogle Scholar
  2. 2.
    Scheiner S (1997) Hydrogen bonding: a theoretical perspecitive. Oxford University Press, New YorkGoogle Scholar
  3. 3.
    Politzer P, Murray JS, Clark T (2010) Phys Chem Chem Phys 12:7748–7757CrossRefGoogle Scholar
  4. 4.
    Politzer P, Murray JS, Clark T (2013) Phys Chem Chem Phys 15:11178–11189CrossRefGoogle Scholar
  5. 5.
    Politzer P, Murray JS (2013) Chem Phys Chem 14:278–294CrossRefGoogle Scholar
  6. 6.
    Guo X, Liu YW, Li QZ, Li WZ, Cheng JB (2015) Chem Phys Let 620:7–12CrossRefGoogle Scholar
  7. 7.
    Wei YX, Li QZ, Scheiner S (2018) Chem Phys Chem 19:736–743CrossRefGoogle Scholar
  8. 8.
    Grabowski SJ (2014) Chem Phys Chem 15:2985–2993CrossRefGoogle Scholar
  9. 9.
    Xu HL, Cheng JB, Yang X, Liu ZB, Li WZ, Li QZ (2017) Chem Phys Chem 18:2442–2450CrossRefGoogle Scholar
  10. 10.
    Dong WB, Yang X, Cheng JB, Li WZ, Li QZ (2018) J Fluorine Chem 207:38–44CrossRefGoogle Scholar
  11. 11.
    Zierkiewicz W, Michalczyk M, Scheiner S (2018) Molecules 23:1416CrossRefGoogle Scholar
  12. 12.
    Nziko PV, Scheiner S (2016) Phys Chem Chem Phys 18:3581–3590CrossRefGoogle Scholar
  13. 13.
    Esrafili MD, Mohammadian-Sabet F (2016) Struct Chem 27:1157–1164CrossRefGoogle Scholar
  14. 14.
    Bauzá A, Frontera A (2016) Chem Phys Chem 17:3181–3186CrossRefGoogle Scholar
  15. 15.
    Egli M, Gessner RV (1995) Proc Natl Acad Sci USA 92:180–184CrossRefGoogle Scholar
  16. 16.
    Hof F, Scofield DM, Schweizer WB, Diederich F (2004) Angew Chem Int Ed 43:5056–5059CrossRefGoogle Scholar
  17. 17.
    Zhou P, Zou JW, Tian FF, Shang ZC (2009) J Chem Inf Model 49:2344–2355CrossRefGoogle Scholar
  18. 18.
    Fischer FR, Wood PA, Allen FH, Diederich F (2008) Proc Natl Acad Sci USA 105:17290–17294CrossRefGoogle Scholar
  19. 19.
    Kamer KJ, Choudhary A, Raines RT (2013) J Org Chem 78:2099–2103CrossRefGoogle Scholar
  20. 20.
    Cormanich RA, Rittner R, O’Hagan D, Bühl M (2016) J Comput Chem 37:25–33CrossRefGoogle Scholar
  21. 21.
    Grabowski SJ (2015) Chem Phys Chem 16:1470–1479CrossRefGoogle Scholar
  22. 22.
    Leopold KR, Canagaratna M (1997) Acc Chem Res 30:57–64CrossRefGoogle Scholar
  23. 23.
    Gao L, Zeng YL, Zhang XY, Meng LP (2016) J Comput Chem 37:1321–1327CrossRefGoogle Scholar
  24. 24.
    Phillips JA, Giesen DJ, Wells NP, Halfen JA, Knutson CC, Wrass JP (2005) J Phys Chem A 36:8199–8208CrossRefGoogle Scholar
  25. 25.
    Hase Y (2007) Spectrochim Acta A 68:734–738CrossRefGoogle Scholar
  26. 26.
    Müller J, Ruschewitz U, Indris O, Hartwig H, Stahl W (1999) J Am Chem Soc 121:4647–4652CrossRefGoogle Scholar
  27. 27.
    Phillips JA, Halfen JA, Wrass JP, Knutson CC, Cramer CJ (2006) Inorg Chem 45:722–731CrossRefGoogle Scholar
  28. 28.
    Liu MX, Zhuo HY, Li QZ, Li WZ, Cheng JB (2016) J Mol Model 22:10CrossRefGoogle Scholar
  29. 29.
    Esrafili MD, Mohammadian-Sabet F (2016) Mol Phys 114:1528–1538CrossRefGoogle Scholar
  30. 30.
    Zhang JR, Wei YX, Li WZ, Cheng JB, Li QZ (2018) Appl Organometal Chem 32:e4367CrossRefGoogle Scholar
  31. 31.
    Dong WB, Wang YQ, Yang X, Cheng JB, Li QZ (2018) J Mol Graphics Model 84:118–124CrossRefGoogle Scholar
  32. 32.
    Zhang JR, Li WZ, Cheng JB, Liu ZB, Li QZ (2018) RSC Adv 8:26580–26588CrossRefGoogle Scholar
  33. 33.
    Yourdkhani S, Korona T, Hadipour NL (2015) J Comput Chem 36:2412–2428CrossRefGoogle Scholar
  34. 34.
    Grabowski SJ (2018) J Comput Chem 39:472–480CrossRefGoogle Scholar
  35. 35.
    Bhunya S, Malakar T, Ganguly G, Paul A (2016) ACS Catal 6:7907–7934CrossRefGoogle Scholar
  36. 36.
    Hamilton CW, Baker RT, Staubitz A, Manners I (2009) Chem Soc Rev 38:279–293CrossRefGoogle Scholar
  37. 37.
    Grabowski SJ (2015) Molecules 20:11297–11316CrossRefGoogle Scholar
  38. 38.
    Grabowski SJ (2017) Struct Chem 28:1163–1171CrossRefGoogle Scholar
  39. 39.
    Jabłoński M (2018) J Comput Chem 39:1177–1191CrossRefGoogle Scholar
  40. 40.
    Fiacco DL, Leopold KR (2003) J Phys Chem A 107:2808–2814CrossRefGoogle Scholar
  41. 41.
    Bauzá A, Frontera A (2017) Theor Chem Acc 136:37CrossRefGoogle Scholar
  42. 42.
    An XL, Liu HP, Li QZ, Gong BA, Cheng JB (2008) J Phys Chem A 112:5258–5263CrossRefGoogle Scholar
  43. 43.
    Scheiner S, Grabowski SJ, Kar T (2001) J Phys Chem A 105:10607–10612CrossRefGoogle Scholar
  44. 44.
    Alkorta I, Rozas I, Elguero J (2000) J Fluorine Chem 101:233–238CrossRefGoogle Scholar
  45. 45.
    Zou JW, Jiang YJ, Guo M, Hu GX, Zhang B, Liu HC, Yu QC (2005) Chem Eur J 11:740–751CrossRefGoogle Scholar
  46. 46.
    Li QZ, Jing B, Li R, Liu ZB, Li WZ, Luan F, Cheng JB, Gong BA, Sun JZ (2011) Phys Chem Chem Phys 13:2266–2271CrossRefGoogle Scholar
  47. 47.
    Robertson CC, Wright JS, Carrington EJ, Perutz RN, Hunter CA, Brammer L (2017) Chem Sci 8:5392–5398CrossRefGoogle Scholar
  48. 48.
    Shen D, Su PF, Wu W (2018) Phys Chem Chem Phys 20:26126–26139CrossRefGoogle Scholar
  49. 49.
    Hansen AS, Du L, Kjaergaard HG (2014) Phys Chem Chem Phys 16:22882–22891CrossRefGoogle Scholar
  50. 50.
    Riley KE, Murray JS, Fanfrlík J, Řezáč J, Solá RJ, Concha MC, Ramos FM, Politzer P (2011) J Mol Model 17:3309–3318CrossRefGoogle Scholar
  51. 51.
    Boys SF, Bernardi FD (1970) Mol Phys 19:553–556CrossRefGoogle Scholar
  52. 52.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Scalmani G, Cossi M, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene MLX, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VGDS, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Gonzalez C, Wong MW, Ittsburgh PA, Pople JA (2009) Gaussian 09, revision A02. Gaussian Inc, Wallingford.Google Scholar
  53. 53.
    Bader RFW (2000) AIM Program, v. 2.0, McMaster University, Hamilton, CanadaGoogle Scholar
  54. 54.
    Bulat FA, Toro-Labbe A, Brinck T, Murray JS, Politzer P (2010) J Mol Model 16:1679–1691CrossRefGoogle Scholar
  55. 55.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926CrossRefGoogle Scholar
  56. 56.
    Su PF, Li H (2009) J Chem Phys 131:014102CrossRefGoogle Scholar
  57. 57.
    Schmidt MW, Baldridge KK, Boalz JA, Elbert ST, Gorden MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347–1363CrossRefGoogle Scholar
  58. 58.
    SCM, ADF, Release 2008.01; Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, Available at: http://www.scm.com
  59. 59.
    Politzer P, Murray JS, Clark T, Resnati G (2017) Phys Chem Chem Phys 19:32166–32178CrossRefGoogle Scholar
  60. 60.
    Batsanov SS (2001) Inorg Mater 37:871–885CrossRefGoogle Scholar
  61. 61.
    Koch U, Popelier P (1995) J Phys Chem 99:9747–9754CrossRefGoogle Scholar
  62. 62.
    Politzer P, Murray JS, Clark T (2015) J Mol Model 21:52CrossRefGoogle Scholar
  63. 63.
    Politzer P, Murray JS (2017) Crystals 7:212CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemical Engineering, Inner Mongolia Vocational College of Chemical EngineeringHohhotPeople’s Republic of China

Personalised recommendations