Advertisement

The Gaussian G4 structure, enthalpy, and free energy of formation of trans-dimethyl-, diethyl-, dipropyl-, and dibutylcyclopentanes

  • Donald W. RogersEmail author
  • Andreas A. Zavitsas
  • Laura K. Rogers-Bennett
Original Paper
  • 23 Downloads

Abstract

We have computed the Gaussian G4 structures, enthalpies of formation, and Gibbs free energies of formation of four trans-1,2-dialkylcyclopentanes. Aside from their intrinsic interest as products of petroleum refining, we wish to use these simple trans-1,2-dialkylcyclopentanes as a database in the study of larger, more complicated molecules like prostanoic acid and its derivatives, the prostaglandins.

Keywords

Alkylcyclopentanes Comet Supercomputer G4 Enthalpy Gibbs free energy 

Notes

Acknowledgments

This work was carried out under NSF grant # CHE-120084 at the San Diego Supercomputer Center. We are happy to acknowledge the help received from Mahidhar Tatineni and others at the help desk of SDSC. We acknowledge W. N. Venables and D. M. Smith. We cite the R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/

Supplementary material

894_2019_4088_MOESM1_ESM.docx (32 kb)
ESM 1 (DOCX 31 kb)

References

  1. 1.
    Good WD, Smith NK (1969) J Chem Eng Data 14:102–106CrossRefGoogle Scholar
  2. 2.
    Emil'yanenko VN, Toktonov AV, Kozlova SA, Androshko A, Androshko V, Bosaverner N (2008) J Phys Chem A 112:4036–4045Google Scholar
  3. 3.
    McCullough JP (1959) J Am Chem Soc 81:5880–5883CrossRefGoogle Scholar
  4. 4.
    Prosen EJ, Rossini FD (1946) J Res NBS 36:269Google Scholar
  5. 5.
    Pople JA (1999) Nobel lecture: quantum chemical models. Rev Mod Phys 71(5):1267–1274CrossRefGoogle Scholar
  6. 6.
    Dykstra CE (1992) Quantum chemistry and molecular spectroscopy. Prentice Hall, Englewood Cliffs, p 7632Google Scholar
  7. 7.
    Szabo A, Ostlund NS (1996) Modern quantum chemistry: introduction to advanced electronic structure theory. Dover, MineolaGoogle Scholar
  8. 8.
    Curtiss LA, Redfern PC, Raghavachari K (2007) J Chem Phys 126:084108CrossRefGoogle Scholar
  9. 9.
    Comet (2019) SDSC San Diego Supercomputer Center. Google Scholar
  10. 10.
    Serena Software (2005) PC model version 9.1. Serena Software, BloomingtonGoogle Scholar
  11. 11.
    Curtiss LA, Redfern PC, Raghavachari K (2011) WIREs Comput Mol Sci 1:810–825 (see refs 44–47). Google Scholar
  12. 12.
    Rayne S, Forest K (2010) J Chem Eng Data 55:5359–5364CrossRefGoogle Scholar
  13. 13.
    R was initially written by Robert Gentleman and Ross Ihaka of the Statistics Department of the University of Auckland. The current R is the result of a collaborative effort with contributions from all over the world. See Venables, W. An Introduction to R. Google Scholar
  14. 14.
    Beckerman AP, Petchey OL (2010) Getting started with R. Oxford University Press, OxfordGoogle Scholar
  15. 15.
    Afeefy HY, Liebman JF, Stein SE (2009) Neutral thermochemical data. In: Linstrom PJ, Mallard WG (eds) NIST Chemistry Webbook, NIST Standard reference database number 69. National Institute of Standards and Technology, Gaithersburg, MD. Google Scholar
  16. 16.
    Rogers DW, Zavitsas AA (2010) J Organomet Chem 81(1):673–678Google Scholar
  17. 17.
    Prosen EJ, Rossini FD (1945) J Res NBS 36:269 26Google Scholar
  18. 18.
    Teetor P (2011) R Cookbook. O’Reilly Media Inc., SebastopolGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryLong Island UniversityBrooklynUSA
  2. 2.Bodega Marine LaboratoryUniversity of California DavisBodega BayUSA

Personalised recommendations