Advertisement

Change in binding states between catabolite activating protein and DNA induced by ligand-binding: molecular dynamics and ab initio fragment molecular orbital calculations

  • Ryo Anan
  • Toshiya Nakamura
  • Kanako Shimamura
  • Yuki Matsushita
  • Tatsuya Ohyama
  • Noriyuki KuritaEmail author
Original Paper
  • 77 Downloads

Abstract

The transcription mechanism of genetic information from DNA to RNA is efficiently controlled by regulatory proteins, such as catabolite activator protein (CAP), and their ligands. When cyclic AMP (cAMP) binds to CAP, the complex forms a dimer and binds specifically to DNA to activate the transcription mechanism. On the other hand, when cyclic GMP (cGMP) binds to CAP, the complex has no marked effect on the mechanism. In our previous study, based on molecular dynamics (MD) and ab initio fragment molecular orbital (FMO) methods, we elucidated which residues of CAP are important for the specific interactions between CAP and DNA in the CAP-monomer+DNA + cAMP complex. However, this monomer model for CAP cannot describe real interactions between the CAP-dimer and DNA because CAPs form a dimer before binding to DNA. Accordingly, here, we investigated stable structures and their electronic states for the CAP-dimer+DNA complex with cAMP or cGMP ligand, to clarify the influence of ligand-binding on the interactions between CAP-dimer and DNA. The MD simulations elucidated that the DNA-binding domains of CAP-dimer behave differently depending on the ligand bound to the CAP-dimer. In addition, FMO calculations revealed that the binding energy between CAP-dimer and DNA for the CAP-dimer+DNA + cAMP complex is larger than that for the CAP-dimer+DNA + cGMP complex, being consistent with experiments. It was also highlighted that the Arg185 and Lys188 residues of CAP-dimer are important for the binding between CAP-dimer and DNA. These results provide useful information for proposing new compounds that efficiently control the transcription mechanism.

Keywords

Molecular dynamics Fragment molecular orbital Catabolite activator protein Cyclic AMP GMP Specific interactions 

Notes

Supplementary material

894_2019_4087_MOESM1_ESM.docx (3.1 mb)
ESM 1 (DOCX 3221 kb)

References

  1. 1.
    Bell CE, Lewis M (2000) A closer view of the conformation of the lac repressor bound to operator. Nat Struct Biol 7:209–214CrossRefGoogle Scholar
  2. 2.
    Napoli AA, Lawson CL, Ebright RH, Berman HM (2006) Indirect readout of DNA sequence at the primary-kink site in the CAP-DNA complex: recognition of pyrimidine-purine and purine-purine steps. J Mol Biol 357:173–183CrossRefGoogle Scholar
  3. 3.
    Pastan I, Crombrugghe BD, Perlman RL, Varmus HE (1970) Regulation of inducible enzyme synthesis in escherichia coli by cyclic adenosine 3′, 5′-monophosphate. Science 169:339–344CrossRefGoogle Scholar
  4. 4.
    Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318–356CrossRefGoogle Scholar
  5. 5.
    Passner JM, Schullz SC, Steitz TA (2000) Modeling the cAMP-induced allosteric transition using the crystal structure of CAP-cAMP at 2.1 Å resolution. J Mol Biol 304:847–859CrossRefGoogle Scholar
  6. 6.
    Kim J, Adhya S, Garges S (1992) Allosteric changes in the cAMP receptor protein of Escherichia coli: hinge reorientation. Proc Natl Acad Sci USA 89:9700–9704CrossRefGoogle Scholar
  7. 7.
    Weber IT, Steitz TA (1987) Structure of a complex of catabolite gene activator protein and cyclic AMP refined at 2.5 Å resolution. J Mol Biol 198:311–326CrossRefGoogle Scholar
  8. 8.
    Popovych N, Tzeng SR, Tonelli M, Ebright RH, Kalodimos CG (2009) Structural basis for cAMP-mediated allosteric control of the catabolite activator protein. Proc Natl Acad Sci USA 106:6927–6932CrossRefGoogle Scholar
  9. 9.
    Matsushita Y, Murakawa T, Shimamura K, Oishi M, Ohyama T, Kurita N (2015) Specific interactions between DNA and regulatory protein controlled by ligand-binding: ab initio molecular simulation. AIP Conference Proceedings 1649:121–129CrossRefGoogle Scholar
  10. 10.
    Hyper cube Inc. (2000) HyperChem 6.03. Gainesville, FLGoogle Scholar
  11. 11.
    Li H, Robertson AD, Jensen JH (2005) Very fast empirical prediction and rationalization of Protein pKa values. Proteins 61:704–721CrossRefGoogle Scholar
  12. 12.
    Bas DC, Rogers DM, Jensen JH (2008) Very fast prediction and rationalization of pKa values for protein-ligand complexes. Proteins 73:765–783CrossRefGoogle Scholar
  13. 13.
    Olsson MHM, Søndergard CR, Rostkowski M, Jensen JH (2011) PROPKA3: Consistent treatment of internal and surface residues in empirical pKa predictions. J Chem Theory Comp 7:525–537CrossRefGoogle Scholar
  14. 14.
    Søndergard CR, Olsson MHM, Rostkowski M, Jensen JH (2011) Improved treatment of ligands and coupling effects in empirical calculation and rationalization of pKa values. J Chem Theory Comp 7:2284–2295CrossRefGoogle Scholar
  15. 15.
    Case DA et al (2012) AMBER12. University of California, San FranciscoGoogle Scholar
  16. 16.
    Pronk S, Pall S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D, Hess B, Lindahl E (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29:845–854CrossRefGoogle Scholar
  17. 17.
    Hess B, Kutzner C, van Der Spoel D, Lindahl E (2005) GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comp 4:435–447CrossRefGoogle Scholar
  18. 18.
    Van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718CrossRefGoogle Scholar
  19. 19.
    Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, Shaw DE (2010) Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 78:1950–1958PubMedPubMedCentralGoogle Scholar
  20. 20.
    Jorgensen WL, Chandrasekhar J, Madura J, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935CrossRefGoogle Scholar
  21. 21.
    Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174CrossRefGoogle Scholar
  22. 22.
    Frisch MJ et al (2009) Gaussian 09, Revision A.02. Gaussian, Inc., WallingfordGoogle Scholar
  23. 23.
    Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity-rescaling. J Chem Phys 126:014101CrossRefGoogle Scholar
  24. 24.
    Nosé S (1984) A molecular dynamics method for simulations in the canonical ensemble. Mol Phys 52:255–268CrossRefGoogle Scholar
  25. 25.
    Hoover WG (1985) Canonical dynamics: Equilibrium phase-space distributions. Phys Rev A 31:1695–1697CrossRefGoogle Scholar
  26. 26.
    Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: A new molecular dynamics method. J Appl Phys 52:7182–7190CrossRefGoogle Scholar
  27. 27.
    Nosé S, Klein ML (1983) Constant pressure molecular dynamics for molecular systems. Mol Phys 50:1055–1076CrossRefGoogle Scholar
  28. 28.
    Kitaura K, Ikeo E, Asada T, Nakano T, Uebayasi M (1999) Fragment molecular orbital method: an approximate computational method for large molecules. Chem Phys Lett 313:701–706CrossRefGoogle Scholar
  29. 29.
    Nakano T, Kaminuma T, Sato T, Akiyama Y, Uebayasi M, Kitaura K (2000) Fragment molecular orbital method: application to polypeptides. Chem Phys Lett 318:614–618CrossRefGoogle Scholar
  30. 30.
    Mochizuki Y, Nakano T, Koikegami S, Tanimori S, Abe Y, Nagashima U, Kitaura K (2004) A parallelized integral-direct second-order Møller-Plesset perturbation theory method with a fragment molecular orbital scheme. Theor Chem Accounts 112:442–452CrossRefGoogle Scholar
  31. 31.
    Mochizuki Y, Koikegami S, Nakano T, Amari S, Kitaura K (2004) Large scale MP2 calculations with fragment molecular orbital scheme. Chem Phys Lett 396:473–479CrossRefGoogle Scholar
  32. 32.
    Mochizuki Y, Yamashita K, Nakano T, Okiyama T, Fukuzawa K, Taguchi N, Tanaka S (2011) Higher-order correlated calculations based on fragment molecular orbital scheme. Theor Chem Accounts 130:515–530CrossRefGoogle Scholar
  33. 33.
    Fukuzawa K, Nakano T, Kato A, Mochizuki Y, Tanaka S (2007) Applications of the fragment molecular orbital method for bio-macromolecules. J Comput Chem 6:185–198Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ryo Anan
    • 1
  • Toshiya Nakamura
    • 1
  • Kanako Shimamura
    • 1
  • Yuki Matsushita
    • 1
  • Tatsuya Ohyama
    • 1
  • Noriyuki Kurita
    • 1
    Email author
  1. 1.Department of Computer Science and EngineeringToyohashi University of TechnologyToyohashiJapan

Personalised recommendations