A comparative study of analytic representations of potential energy curves for O2, N2, and SO in their ground electronic states

  • Judith P. AraújoEmail author
  • Marcos D. Alves
  • Ramon S. da Silva
  • Maikel Y. Ballester
Original Paper
Part of the following topical collections:
  1. QUITEL 2018 (44th Congress of Theoretical Chemists of Latin Expression)


In this work, a review of six functional forms used to represent potential energy curves (PECs) is presented. The starting point is the Rydberg potential, followed by functions by Hulburt–Hirschfelder, Murrell–Sorbie, Thakkar, Hua and finalizing with the potential for diatomic systems by Aguado and Paniagua. The mathematical behavior of these functions for the short- and long-range regions is discussed. A comparison highlighting the positive and negative aspects of each representation is also presented. As study cases, three diatomic systems O2, N2 and SO in their respective ground electronic states were selected. To obtain spectroscopic parameters, ab initio energies were first calculated at multi-reference configuration interaction (MRCI) with the Davidson modification (MRCI+Q) level of theory, using aug-cc-pVXZ (X = T,Q,5,6) Dunning basis sets. Such energies were then fitted to respective functional forms. The so-obtained spectroscopic constants are compared also with available literature data.


Potential energy curves Diatomic systems Spectroscopic parameters ab initio calculations 



JPA thanks IF Sudeste MG for the leave of absence during her PhD studies. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. Financial support from FAPEMIG and UFJF is also acknowledged.

Supplementary material

894_2019_4079_MOESM1_ESM.pdf (132 kb)
(PDF 132 KB)


  1. 1.
    Aguado A, Camacho JJ, Paniagua M (1992) A numerical procedure to obtain accurate potential energy curves for diatomic molecules. J Mol Struc (THEOCHEM) 254:135–144. CrossRefGoogle Scholar
  2. 2.
    Visser R, Van Dishoeck EF, Black JH (2009) The photodissociation and chemistry of CO isotopologues: applications to interstellar clouds and circumstellar disks. Astron Astrophys 503:323–343. CrossRefGoogle Scholar
  3. 3.
    Crispim LWS, Hallak PH, Benilov MS, Ballester MY (2018) Modelling spark-plug discharge in dry air, Combust . Flame 198:81–88. CrossRefGoogle Scholar
  4. 4.
    Ballester MY, Varandas AJC (2007) Theoretical study of the reaction O H + S OH + SO2. Chem Phys Lett 433:279–285. CrossRefGoogle Scholar
  5. 5.
    Bell MT, Softley TM (2009) Ultracold molecules and ultracold chemistry. Mol Phys 107:99–132. CrossRefGoogle Scholar
  6. 6.
    Zanchet A, Roncero o González-Lezana T, Rodríguez-López A, Aguado A, Sanz-Sanz C, Gómez-Carrasco S (2009) Differential cross sections and product rotational polarization in a+ BC reactions using wave packet methods: h + + d 2 and L i + H F examples. J Phys Chem A 113(52):14488–14501. CrossRefGoogle Scholar
  7. 7.
    Marx D, Hutter J (2009) Ab initio molecular dynamics: Basic theory and advanced methods 11-22. Cambridge University Press, New YorkCrossRefGoogle Scholar
  8. 8.
    Morais VMF (1990) Estudos Teóricos sobre Superfícies de Energia Potencial e Dinâmica Molecular em Trímeros de Metais Alcalinos. Dissertação (Doutorado em Química)- Instituto de Ciências Biomédicas Abel Salaza, Universidade do Porto, Porto. Cambridge University Press, New YorkGoogle Scholar
  9. 9.
    Rydberg R (1931) Graphische Darstellung einiger Ban-denspe-ktroskopischer Ergebnisse [J]. Z Phys 73:376–385. CrossRefGoogle Scholar
  10. 10.
    Morse PM (1929) Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys Rev 34:57–64. CrossRefGoogle Scholar
  11. 11.
    Varshni YP (1957) Comparative study of potential energy functions for diatomic molecules. Rev Mod Phys 29:664–682. CrossRefGoogle Scholar
  12. 12.
    Hulburt HM, Hirschfelder JO (1941) The energy levels of a rotating vibrator. J Chem Phys 9:61–69. CrossRefGoogle Scholar
  13. 13.
    Dunham JL (1932) The energy levels of a rotating vibrator. Phys Rev 41:721–731. CrossRefGoogle Scholar
  14. 14.
    Hulburt HM, Hirschfelder JO (1961) Erratum: Potential energy functions for diatomic molecules. J Chem Phys 35:1901–1902. CrossRefGoogle Scholar
  15. 15.
    Tawde NR, Gopalakrishnan K (1954) Hulbert-hirschfelder U(r) function in C2(Swan) system. Ind J Phys 28:469–472. ISSN: 0019–5480Google Scholar
  16. 16.
    Herzberg G (1950) Spectra of diatomic molecules d. Van Nostrand Company, New JerseyGoogle Scholar
  17. 17.
    Tawde NR, Katti MR (1962) Comments on “Potential energy function for diatomic molecules”. J Chem Phys 37:674–675. CrossRefGoogle Scholar
  18. 18.
    Murrell JN, Sorbie KS (1974) New analytic form for the potential energy curves of stable diatomic states. J Chem Soc Faraday Trans 2(70):1552–1556. CrossRefGoogle Scholar
  19. 19.
    Klein OZ (1932) Zur Berechnung von Potentialkurven für zweiatomige Moleküle mit Hilfe von Spektraltermen. Z Phys 76:226–235. CrossRefGoogle Scholar
  20. 20.
    Rees ALG (1947) The calculation of potential-energy curves from band-spectroscopic data. Proc Phys Soc Lond 59:998–1008. CrossRefGoogle Scholar
  21. 21.
    Thakkar AJ (1975) A new generalized expansion for the potential energy curves of diatomic molecules. J Chem Phys 602:1693–1701. CrossRefGoogle Scholar
  22. 22.
    Simons G, Parr RG, Filan JM (1973) A new alternative to the Dunham potential for diatomic molecules. J Mol Struct 59:3229–3234. Google Scholar
  23. 23.
    Lennard-Jones JE (1924) On the determination of molecular fields: II: from the equation of state of a gas. Proc R Soc Lond A 106(738):463–477. CrossRefGoogle Scholar
  24. 24.
    Hua W (1990) Four-parameter exactly solvable potential for diatomic molecules. Phys Rev A 42:2524–2529. CrossRefGoogle Scholar
  25. 25.
    Levine IN (1966) Accurate potential-energy function for diatomic molecules. J Chem Phys 45:827–828. CrossRefGoogle Scholar
  26. 26.
    Aguado A, Paniagua M (1992) A new functional form to obtain analytical potentials of triatomic molecules. J Chem Phys 96(2):1265–1275. CrossRefGoogle Scholar
  27. 27.
    Murrell JN, Carter S, Farantos SC, Huxley P, Varandas AJC (1984) Molecular potential energy functions. Wiley, New YorkGoogle Scholar
  28. 28.
    Aguado A, Tablero C, Paniagua M (1998) Global fit of ab initio potential energy surfaces I. Triatomic systems. Comput Phys Commun 108:259–266. CrossRefGoogle Scholar
  29. 29.
    Lulu Z, Song Y-Z, Gao S, Ji-Hua X, Yong Z, Meng Q (2016) Accurate theoretical study on the ground and first-excited states of Na2: potential energy curves, spectroscopic parameters, and vibrational energy levels. Can J Phys 94(12):1–20. Google Scholar
  30. 30.
    Werner H -J, Knowles PJ (1985) A second order multiconfiguration SCF procedure with optimum convergence. J Chem Phys 82:5053–5063. CrossRefGoogle Scholar
  31. 31.
    Werner H -J, Knowles PJ (1988) An efficient internally contracted multiconfiguration-reference configuration interaction method. J Chem Phys 89:5803–5814. CrossRefGoogle Scholar
  32. 32.
    Wan MJ, Huang DH, Fan QC, Jiang G (2013) A study of the low-lying states at multi-reference configuration interaction level of N2 molecule. Indian J Phys 87:245–250. CrossRefGoogle Scholar
  33. 33.
    Streit L, Machado FBC, Custodio R (2011) Double ionization energies of HCl, HBr, c l 2 and b r 2 molecules: An MRCI study. Chem Phys Lett 506:22–25. CrossRefGoogle Scholar
  34. 34.
    Hochlaf M, Ndome H, Hammoutène D, Vervloet M (2010) Valence–Rydberg electronic states of n 2: Spectroscopy and spin–orbit couplings. J Phys B 43(1-7):245101. CrossRefGoogle Scholar
  35. 35.
    Dunning Jr. T H, Peterson KA, Wilson AK (2001) Gaussian basis sets for use in correlated molecular calculations. X. The atoms aluminium through argon revisited. J. Chem. Phys. 114:9244–9253. CrossRefGoogle Scholar
  36. 36.
    Werner H-J, Knowles PJ, Knizia G, Manby FcR, Schütz M, Celani P, Korona T, Lindh R, Mitrushenkov A, Rauhut G et al (2010) MOLPRO, version 2010.1, a package of ab initio programs. See
  37. 37.
    Silva ML, Guerra V, Loureiro J, Sá P A (2008) Vibrational distributions in n 2 with an improved calculation of energy levels using the RKR method. Chem Phys 348:187–194. CrossRefGoogle Scholar
  38. 38.
    Politzer P, Toro-Labbé A, Gutiérrez-Oliva S, Murraya JS (2012) Perspectives on the reaction force. Book: Adv Quantum Chem 64:189–209. Google Scholar
  39. 39.
    Zhang L -L, Song Y -Z, Gao S -B, Xu J -H, Zhou Y, Meng Q -T (2016) Accurate theoretical study on the ground and first-excited states of n a 2: potential energy curves, spectroscopic parameters, and vibrational energy levels. Can J Phys 94:1259–1264. CrossRefGoogle Scholar
  40. 40.
    Mills K, Spanner M, Tamblyn I (2017) Deep learning and the Schrödinger equation. Phys Rev A 96 (1-9):042113. CrossRefGoogle Scholar
  41. 41.
    Xiao-Niu Z, De-Heng S, Jin-Feng S, Zun-Lue Z (2010) Elastic scattering of two ground-state N atoms. Chin Phys B 19(1-8):013501. CrossRefGoogle Scholar
  42. 42.
    Poveda LA, Varandas AJC (2003) Accurate single-valued double many-body expansion potential energy surface for ground-state HN2. J Phys Chem A 107:7923–7930. CrossRefGoogle Scholar
  43. 43.
    Varandas AJC, Silva JD (1992) Potential model for diatomic molecules including the united-atom limit and its use in a multiproperty fit for argon. J Chem Soc Faraday Trans 88:941–954. CrossRefGoogle Scholar
  44. 44.
    Bytautas L, Matsunaga N, Ruedenberg K (2010) Accurate ab initio potential energy curve of o 2. II. Core-valence correlations, relativistic contributions, and vibration-rotation spectrum. J Chem Phys 132 (1-15):074307. CrossRefGoogle Scholar
  45. 45.
    Borin AC, Ornellas FR (1999) The lowest triplet and singlet electronic states of the molecule SO. Chem Phys 247:351–364. CrossRefGoogle Scholar
  46. 46.
    Rodrigues SPJ, Sabín J A, Varandas AJC (2002) Single-valued double many-body expansion potential energy surface of ground-state SO2. J Phys Chem A 106:556–562. CrossRefGoogle Scholar
  47. 47.
    Varandas AJC, Rodrigues SPJ (2002) A realistic double many-body expansion potential energy surface for SO2(x 1 a ) from a multiproperty fit to accurate ab initio energies and vibrational levels. Spectrochim Acta A 58:629–647. CrossRefGoogle Scholar
  48. 48.
    Le Roy RJ, Huang Y, Jary C (2006) An accurate analytic potential function for ground-state n 2 from a direct-potential-fit analysis of spectroscopic data. J Chem Phys 125 (1-12):164310. CrossRefGoogle Scholar
  49. 49.
    Huber KP, Herzberg G (1979) Molecular Spectra and Molecular Structure, Vol. IV Constants of diatomic molecules. Van Nostrand Reinhold, New YorkCrossRefGoogle Scholar
  50. 50.
    Chattopadhyay S, Chaudhuri RK, Mahapatra US (2008) Application of improved virtual orbital based multireference methods to n 2, LiF, and c 4 h 6 systems. J Chem Phys 129:244108. CrossRefGoogle Scholar
  51. 51.
    Piris M (2018) Dynamic electron-correlation energy in the natural-orbital-functional second-order-Mϕ ller-Plesset method from the orbital-invariant perturbation theory. Phys Rev. A 98(1-6):022504. CrossRefGoogle Scholar
  52. 52.
    Fraga S, Ransil BJ (1961) Studies in molecular structure. V. Computed spectroscopic constants for selected diatomic molecules of the first row. J Chem Phys 35:669–678. CrossRefGoogle Scholar
  53. 53.
    Pawlowski F, Halkier A (2003) Jϕ rgensen P Accuracy of spectroscopic constants of diatomic molecules from ab initio calculations. J Chem Phys 118:2539–2549. CrossRefGoogle Scholar
  54. 54.
    Li X, Paldus J (2008) Full potential energy curve for n 2 by the reduced multireference coupled-cluster method. J Chem Phys 129:054104. CrossRefGoogle Scholar
  55. 55.
    Dong-Lan W, An-Dong X, Xiao-Guang Y, Hui-Jun W (2012) The analytical potential energy function of flue gas SO2(x 1 a 1). Chin Phys B 21(1-6):043103. Google Scholar
  56. 56.
    Guan J, Wang F, Ziegler T, Cox H (2006) Time-dependent density functional study of the electronic potential energy curves and excitation spectrum of the oxygen molecule. J Chem Phys 125(1-9):044314. CrossRefGoogle Scholar
  57. 57.
    Schaefer III HF (1971) Ab initio potential curve for the x 3Σ state of o 2. J Chem Phys 54:2207–2211. CrossRefGoogle Scholar
  58. 58.
    Azizi Z, Roos BO, Veryazov V (2006) How accurate is the CASPT2 method?. Phys Chem Chem Phys 8:2727–2732. CrossRefGoogle Scholar
  59. 59.
    Lam C -S, Wang H, Xu Y, Lau K -C, Ng CY (2011) A vacuum-ultraviolet laser pulsed field ionization-photoelectron study of sulfur monoxide (SO) and its cation (S O +). J Chem Phys 134(1-7):144304. CrossRefGoogle Scholar
  60. 60.
    Glarborg P, Kubel D, Dam-Johansen K, Chiang H-M, Bozzelli JW (1996) Impact of SO2 and NO on CO oxidation under post-flame conditions. Int J Chem Kinet 28:773–790.<773::AID-KIN8>3.0.CO;2-K CrossRefGoogle Scholar
  61. 61.
    Chen X, Asmar F, Wang H, Weiner BR (1991) Nascent sulfur monoxide (x3. SIGMA.-) vibrational distributions from the photodissociation of sulfur dioxide, sulfonyl chloride, and dimethylsulfoxide at 193 nm. J Phys Chem 95:6415–6417. CrossRefGoogle Scholar
  62. 62.
    Le Y, Bian W (2011) Extensive theoretical study on electronically excited states and predissociation mechanisms of sulfur monoxide including spin–orbit coupling. J Comput Chem 32:1577–1588. CrossRefGoogle Scholar
  63. 63.
    Swope WC, Lee Y -P, Schaefer III HF (1979) Sulfur oxide: low-lying bound molecular electronic states of SO. J Chem Phys 71:3761–3769. CrossRefGoogle Scholar
  64. 64.
    Roscoe HE, Schuster A (1874) I. Note on the absorption-spectra of potassium and sodium at low temperatures, Proc. Roy Soc Lond 22:362–365. CrossRefGoogle Scholar
  65. 65.
    Xie RH, Hsu PS (2006) Universal reduced potential function for diatomic systems. Phys Rev Lett 96 (1-4):243201. CrossRefGoogle Scholar
  66. 66.
    Zhang GD, Liu JY, Zhang LH, Zhou W, Jia CS (2012) Modified Rosen-Morse potential-energy model for diatomic molecules. Phys Rev A 86(1-5):062510. CrossRefGoogle Scholar
  67. 67.
    Yu CF, Zhiwei W (2011) A universal analytic potential function applied to diatomic molecules. IEEE 3rd Int. Conf. Commun. Soft. Net:105–110.
  68. 68.
    Yu CF (2015) A novel high-precision analytic potential function for diatomic molecules. Key Eng Mater 645:313–318. CrossRefGoogle Scholar
  69. 69.
    Bouaziz D (2015) Kratzer’s molecular potential in quantum mechanics with a generalized uncertainty principle. Ann Phys 355:269–281. CrossRefGoogle Scholar
  70. 70.
    Hooydonk GV (2008) Comment on ”Universal Reduced Potential Function for Diatomic Systems”. Phys Rev Lett 100(1):159301. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidade Federal de Juiz de ForaJuiz de ForaBrazil

Personalised recommendations