Advertisement

A deep insight into the polystyrene chain in cyclohexane at theta temperature: molecular dynamics simulation and quantum chemical calculations

  • Sajad Rasouli
  • Mohammad Reza MoghbeliEmail author
  • Sousa Javan Nikkhah
Original Paper
  • 31 Downloads

Abstract

Molecular characteristics of an atactic polystyrene (aPS) chain with different lengths in a theta solvent, cyclohexane at 307.65 K, were studied via molecular dynamics (MD) simulation. The interaction energy of the aPS dilute solution models and Flory–Huggins (FH) interaction parameter were calculated to investigate the effect of the chain molecular weight on its compatibility with the solvent molecules. The simulation results illustrated that increasing the chain length increased the interactions between the chain and the solvent molecules. The chain dimensions via calculating the radius of gyration (Rg) and end-to-end distance, <r0>, were measured. Mean square displacement (MSD) and diffusivity coefficient of the chains were calculated to determine their dynamic behavior. The results exhibited that two factors of the chain movability and size were important for the diffusion in oligomeric state. Additionally, viscosity of the resultant dilute solutions was calculated via nonequilibrium molecular dynamics simulation (NEMD). Moreover, the steric hindrance of the chains was determined by radial distribution function (RDF) analysis. The calculated characteristics of the chain and solution viscosity results showed a good agreement with experimental published works. Measurement of the potential field of cyclohexane–cyclohexane and aPS–cyclohexane pairs was also based on their potential field via quantum chemical calculations to determine the special orientation of the solvent molecules to each other and to the polymer segments, respectively.

Graphical abstract

(a) The equilibrated dilute solution model of polystyrene in cyclohexane at theta temperature (the red and yellow balls represent carbon and hydrogen atoms, respectively. The cyclohexane molecules are illustrated in line style in the box), (b) the electrostatic potential field around an optimized structure containing two cyclohexane molecules, and (c) around the sole cyclohexane molecule and polystyrene with two repeating units (carbon and hydrogen atoms are represented in green and yellow, respectively).

Keywords

Dilute solution Polystyrene MD simulation Theta solvent condition Quantum calculations 

Notes

References

  1. 1.
    Luo CJ, Nangrejo M, Edirisinghe M (2010) A novel method of selecting solvents for polymer electrospinning. Polymer 51:1654–1662CrossRefGoogle Scholar
  2. 2.
    García MT, Gracia I, Duque G, Lucas AD, Rodríguez JF (2009) Study of the solubility and stability of polystyrene wastes in a dissolution recycling process. Waste Manag 29:1814–1818CrossRefGoogle Scholar
  3. 3.
    Konishi T, Yoshizaki T, Yamakawa H (1991) On the “universal constants” ρ and Φ of flexible polymers. Macromolecules 24:5614–5622CrossRefGoogle Scholar
  4. 4.
    Shahamat M, Rey AD (2013) High pressure miscibility predictions of polyethylene in hexane solutions based on molecular dynamics. Eur Polym J 49:471–481CrossRefGoogle Scholar
  5. 5.
    Han KH, Jeon GS, Hong IK, Lee SB (2013) Prediction of solubility parameter from intrinsic viscosity. J Ind Eng Chem 19:1130–1136CrossRefGoogle Scholar
  6. 6.
    Li Z, Yuan F, Fichthorn KA, Milner ST, Larson RG (2014) Molecular view of polymer/water interfaces in latex paint. Macromolecule 47:6441–6452CrossRefGoogle Scholar
  7. 7.
    Odian G (2004) Principles of polymerization, 4th edn. Wiley, New JerseyCrossRefGoogle Scholar
  8. 8.
    Ovejero G, Pérez P, Romero MD, Guzmán I, Díez E (2007) Solubility and Flory Huggins parameters of SBES, poly(styrene-b-Butene/ethylene-b-styrene) triblock copolymer determined by intrinsic viscosity. Eur Polym J 43:1444–1449CrossRefGoogle Scholar
  9. 9.
    Goh TK, Coventry KD, Blencowe A, Qiao GG (2008) Rheology of Core cross-linked star polymers. Polymer 49:5095–5104CrossRefGoogle Scholar
  10. 10.
    Xu R, Chu B (1989) A Polydiacetylene in dilute solution. Macromolecules 22:3153–3161CrossRefGoogle Scholar
  11. 11.
    Bozdogan AE (2004) A method for determination of thermodynamic and solubility parameters of polymers from temperature and molecular weight dependence of intrinsic viscosity. Polymer 45:6415–6424CrossRefGoogle Scholar
  12. 12.
    Ovejero G, Romero MD, Díez E, Díaz I (2010) Thermodynamic interactions of three SBS (styrene–butadiene–styrene) triblock copolymers with different solvents by means of intrinsic viscosity measurements. Eur Polym J 46:2261–2268CrossRefGoogle Scholar
  13. 13.
    Díez E, Ovejero G, Romero MD, Díaz I (2011) Polymer–solvent interaction parameters of SBS rubbers by inverse gas chromatography measurements. Fluid Phase Equilibr 308:107–113CrossRefGoogle Scholar
  14. 14.
    Du M, Maki Y, Tominaga T, Furukawa H, Gong JP, Osada Y, Zheng Q (2007) Friction of soft gel in dilute polymer solution. Macromolecules 40:4313–4321CrossRefGoogle Scholar
  15. 15.
    Yan ZC, Vlassopoulos D (2016) Chain dimensions and dynamic dilution in branched polymers. Polymer 96:35–44CrossRefGoogle Scholar
  16. 16.
    Dünweg B, Kremer K (1993) Molecular dynamics simulation of a polymer chain in solution. J Chem Phys 99:6983–6997CrossRefGoogle Scholar
  17. 17.
    Abe F, Einaga Y, Yamakawa H (1993) Excluded-volume effects on the intrinsic viscosity of oligomers and polymers of styrene and isobutylene. Macromolecules 26:1891–1897CrossRefGoogle Scholar
  18. 18.
    Osa M, Ueno Y, Yoshizaki T, Yamakawa H (2001) Gyration-radius expansion factor of oligo- and poly(R-Methylstyrene)s in dilute solution. Macromolecules 34:6402–6408CrossRefGoogle Scholar
  19. 19.
    Abe F, Einaga Y, Yoshizaki T, Yamakawa H (1993) Excluded-volume effects on the Mean-Square radius of gyration of oligo- and polystyrenes in dilute solutions. Macromolecules 26:1884–1890CrossRefGoogle Scholar
  20. 20.
    Einaga Y, Koyama H, Konishi T, Yamakawa H (1989) Intrinsic viscosity of oligo- and polystyrenes. Macromolecules 22:3419–3424CrossRefGoogle Scholar
  21. 21.
    Frost RA, Caroline D (1977) Diffusion of polystyrene in a Theta mixed solvent (benzene-%propanol) by photon-correlation spectroscopy. Macromolecules 10:616–618CrossRefGoogle Scholar
  22. 22.
    Gedde UW (1995) Polymer physics1st edn. Chapman and Hall, LondonGoogle Scholar
  23. 23.
    Rasouli S, Moghbeli MR, Javan Nikkhah S (2018) A comprehensive molecular dynamics study of a single polystyrene chain in a good solvent. Curr Appl Phys 18:68–78CrossRefGoogle Scholar
  24. 24.
    Moe NE, Ediger MD (1995) Molecular dynamics computer simulation of Polyisoprene local dynamics in dilute toluene solution. Macromolecules 28:2329–2338CrossRefGoogle Scholar
  25. 25.
    Drew PM, Adolf DB (2005) Intrinsic viscosity of dendrimers via equilibrium molecular dynamics. Soft Matter 1:146–151CrossRefGoogle Scholar
  26. 26.
    Han M, Chen P, Yang X (2005) Molecular dynamics simulation of PAMAM dendrimer in aqueous solution. Polymer 46:3481–3488CrossRefGoogle Scholar
  27. 27.
    Lay HC, Spencer MJS, Evans EJ, Yarovsky I (2003) Molecular simulation study of polymer interactions with silica particles in aqueous solution. J Phys Chem B 107:9681–9691CrossRefGoogle Scholar
  28. 28.
    Horinaka J, Ito S, Yamamoto M, Matsuda T (2000) Molecular dynamics simulation of local motion of polystyrene chain end-comparison with the fluorescence depolarization study. Comput Theor Polym S 10:365–370CrossRefGoogle Scholar
  29. 29.
    Goicochea AG, Briseño M (2012) Application of molecular dynamics computer simulations to evaluate polymer-solvent interactions. J Coat Technol Res 9:279–286CrossRefGoogle Scholar
  30. 30.
    Tesei G, Paradossi G, Chiessi E (2012) Poly(vinyl alcohol) oligomer in dilute aqueous solution: a comparative molecular dynamics simulation study. J Phys Chem B 116:10008–10019CrossRefGoogle Scholar
  31. 31.
    Tung KL, Lu KT, Ruaan RC, Lai JY (2006) Molecular dynamics study of the effect of solvent types on the dynamic properties of polymer chains in solution. Desalination 192:380–390CrossRefGoogle Scholar
  32. 32.
    Tasaki K (1996) Conformation and dynamics of poly(Oxyethylene) in benzene solution: solvent effect from molecular dynamics simulation. Macromolecules 29:8922–8933CrossRefGoogle Scholar
  33. 33.
    Chmelar J, Gregor T, Hajova H, Nistor A, Kosek J (2011) Experimental study and PC-SAFT simulations of sorption equilibria in polystyrene. Polymer 52:3082–3091CrossRefGoogle Scholar
  34. 34.
    Tanobe VOA, Sydenstricker THD, Amico SC, Vargas JVC, Zawadzki SF (2009) Evaluation of flexible Postconsumed polyurethane foams modified by polystyrene grafting as sorbent material for oil spills. J Appl Polym Sci 111:1842–1849CrossRefGoogle Scholar
  35. 35.
    Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19CrossRefGoogle Scholar
  36. 36.
    Sun H (1994) Force field for computation of conformational energies, structures, and vibrational frequencies of aromatic polyesters. J Comput Chem 15:752–768CrossRefGoogle Scholar
  37. 37.
    Sun H, Mumby SJ, Maple JR, Hagler AT (1994) An ab initio CFF93 all-atom force field for polycarbonates. J Am Chem Soc 116:2978–2987CrossRefGoogle Scholar
  38. 38.
    Sun Q, Faller R (2006) Crossover from Unentangled to entangled dynamics in a systematically coarse-grained polystyrene melt. Macromolecules 39:812–820CrossRefGoogle Scholar
  39. 39.
    Schuerch C (1959) The dynamic mechanical behavior of polystyrene: Atactic and isotactic. J Polym Sci 35:281–284CrossRefGoogle Scholar
  40. 40.
    Karatasos K (2014) Graphene/hyperbranched polymer nanocomposites: insight from molecular dynamics simulations. Macromolecules 47:8833–8845CrossRefGoogle Scholar
  41. 41.
    Stadnicki SJ, Gillham JK (1976) The Tll (>g) transition of Atactic polystyrene. J Appl Polym Sci 20:1245–1275CrossRefGoogle Scholar
  42. 42.
    Nikkhah SJ, Moghbeli MR, Hashemianzadeh SM (2015) A molecular simulation study on adhesion behavior of functionalized polyethylene-functionalized graphene Interface. Phys Chem Chem Phys 17:27414–27427CrossRefGoogle Scholar
  43. 43.
    Barth HG, Mays JW (1991) Modern methods of polymer characterization. Wiley, New YorkGoogle Scholar
  44. 44.
    Amani M, Iranagh SA, Golzar K, Sadeghi GMM, Modarress H (2014) Study of nanostructure characterizations and gas separation properties of Poly(Urethane–Urea)s membranes by molecular dynamics simulation. J Membrane Sci 462:28–41CrossRefGoogle Scholar
  45. 45.
    Lee SH (2011) Molecular dynamics simulation studies of viscosity and diffusion of n-alkane oligomers at high temperatures. Bull Kor Chem Soc 32:3909–3913CrossRefGoogle Scholar
  46. 46.
    Chen Y, Liu QL, Zhu AM, Zhang QG, Wu JY (2010) Molecular simulation of CO2/CH4 Permeabilities in polyamide–imide isomers J. Membrane Sci 348:204–212CrossRefGoogle Scholar
  47. 47.
    Yankova TS, Bobrovsky A, Vorobiev AK (2012) Order parameters <P2>, <P4> and <P6> of aligned nematic lc-polymer as determined by numerical simulation of EPR spectra. J Phys Chem B 116:6010–6016CrossRefGoogle Scholar
  48. 48.
    Qiao Y, Zhao L, Li P, Sun H, Li S (2014) Electrospun polystyrene/Polyacrylonitrile Fiber with high oil sorption capacity. J Reinf Plast Comp 33:1849–1858CrossRefGoogle Scholar
  49. 49.
    Tsai DH (1979) The virial theorem and stress calculation in molecular dynamics. J Chern Phys 70:1375–1382CrossRefGoogle Scholar
  50. 50.
    Zhang L, Wang X, Ma H, Huang Y (1999) Conformational behavior of short adsorbed polymer chains. Eur Polym J 35:167–172CrossRefGoogle Scholar
  51. 51.
    Beg SA, Tukur NM, Al-Harbi DK, Hamad EZ (1993) Saturated liquid densities of benzene, cyclohexane, and hexane from 298.15 to 473.15 K. J Chem Eng Data 38:461–464CrossRefGoogle Scholar
  52. 52.
    Sperling LH (2006) Introduction to physical polymer science, 4th edn. Wiley, New YorkGoogle Scholar
  53. 53.
    Hansen CM (2000) Hansen solubility parameters: a user’s handbook, 2nd edn. CRC, Boca RatonGoogle Scholar
  54. 54.
    Grosberg LY, Khokhlov AR (1994) Statistical physics of macromolecules. American Institute of Physics, AIP Press, New YorkGoogle Scholar
  55. 55.
    Rzeznik L, Fleming Y, Wirtz T, Philipp P (2016) Experimental and simulation-based investigation of he, ne and Ar irradiation of polymers for ion microscopy. Beilstein J Nanotechnol 7:1113–1128CrossRefGoogle Scholar
  56. 56.
    Wheeler DR, Fuller NG, Rowley RL (1997) Non-equilibrium molecular dynamics simulation of the shear viscosity of liquid methanol: adaptation of the Ewald sum to lees± Edwards boundary conditions. Mol Phys 92:55–62CrossRefGoogle Scholar
  57. 57.
    Wang BY, Cummings PT (1993) Non-equilibrium molecular dynamics calculation of the shear viscosity of carbon dioxide/Ethan mixtures. Mol Simulat 10:1–11CrossRefGoogle Scholar
  58. 58.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363CrossRefGoogle Scholar
  59. 59.
    Brown WH, Iverson BL, Anslyn E, Foote CS (2016) Organic chemistry, 8th edn. Cengage Learning, BostonGoogle Scholar
  60. 60.
    Milano G, Müller-Plathe F (2004) Cyclohexane-benzene mixtures: thermodynamics and structure from atomistic simulations. J Phys Chem B 108:7415–7423CrossRefGoogle Scholar
  61. 61.
    Wang C, Mo Y, Wagner JP, Schreiner PR, Jemmis ED, Danovich D, Shaik S (2015) The self-Association of Graphane is Driven by London dispersion and enhanced orbital interactions. J Chem Theor Comput 11:1621–1630CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Sajad Rasouli
    • 1
  • Mohammad Reza Moghbeli
    • 1
    Email author
  • Sousa Javan Nikkhah
    • 1
  1. 1.Smart Polymers and Nanocomposites Research Group, School of Chemical EngineeringIran University of Science and TechnologyTehranIran

Personalised recommendations