Advertisement

The effect of GGA functionals on the oxygen reduction reaction catalyzed by Pt(111) and FeN4 doped graphene

  • Xin ChenEmail author
  • Fan Ge
  • Tingting Chen
  • Nanjun Lai
Original Paper
  • 76 Downloads

Abstract

The effect of different generalized gradient approximation (GGA) functionals (BLYP, PW91, PBE, and RPBE) on the oxygen reduction reaction (ORR) catalyzed by Pt(111) and FeN4 doped graphene was investigated. The results indicate that all of the screened GGA functionals are accurate enough to calculate the property of isolated ORR species. However, the calculated results of the ORR on the catalyst surface are greatly affected by the choice of functional. For Pt(111) catalyst, PW91 and PBE proved to be better functionals to investigate ORR on its surface, while for FeN4-doped graphene, BLYP was demonstrated to be the most suitable functional to study the electrocatalytic ORR properties, based on analyzing the adsorption of ORR species, reaction energies of ORR steps, and the adsorption structure of the O2 molecule.

Graphical abstract

Effects of generalized gradient approximation (GGA) functionals on oxygen reduction reactions (ORR)

Keywords

Different GGA functionals Oxygen reduction reaction Pt(111) FeN4 doped graphene DFT 

Notes

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 51602270) and Youth Science and Technology Innovation Team of Southwest Petroleum University (SWPU) (No. 2018CXTD05). We acknowledge the National Supercomputing Center in Shenzhen for providing the computational resources and materials studio (version 7.0, DMol3 module).

References

  1. 1.
    Wang MQ, Yang WH, Wang HH, Chen C, Zhou ZY, Sun SG (2014) ACS Catal 4:3928–3936CrossRefGoogle Scholar
  2. 2.
    Shao MH, Chang QW, Dodelet JP, Chenitz R (2016) Chem Rev 116:3594–3657CrossRefGoogle Scholar
  3. 3.
    Chen X, Chang J, Ke Q (2018) Carbon 126:53–57CrossRefGoogle Scholar
  4. 4.
    Chen X, Chen T (2018) J Electrochem Soc 165:F334–F337CrossRefGoogle Scholar
  5. 5.
    Zheng X, Wu J, Cao X, Abbott J, Jin C, Wang H, Strasser P, Yang R, Chen X, Wu G (2019) Appl Catal B 241:442–451CrossRefGoogle Scholar
  6. 6.
    Christensen R, Hansen HA, Dickens CF, Nørskov JK, Vegge T (2016) J Phys Chem C 120:24910–24916CrossRefGoogle Scholar
  7. 7.
    Pernot P, Civalleri B, Presti D, Savin A (2015) J Phys Chem A 119:5288–5304CrossRefGoogle Scholar
  8. 8.
    Takahashi O, Pettersson LGM (2004) J Chem Phys 121:10339–10345CrossRefGoogle Scholar
  9. 9.
    Bauschlicher JCW (1995) Chem Phys Lett 246:40–44CrossRefGoogle Scholar
  10. 10.
    Getsoian AB, Bell AT (2013) J Phys Chem C 117:25562–25578CrossRefGoogle Scholar
  11. 11.
    Gautier S, Steinmann SN, Michel C, Fleurat-Lessard P, Sautet P (2015) Phys Chem Chem Phys 17:28921–28930CrossRefGoogle Scholar
  12. 12.
    Wellendorff J, Silbaugh TL, Garcia-Pintos D, Nørskov JK, Bligaard T (2015) Surf Sci 640:36–44Google Scholar
  13. 13.
    Illas F, Rubio J, Ricart JM, Pacchioni G (1996) J Chem Phys 105:7192–7199CrossRefGoogle Scholar
  14. 14.
    Perdew JP, Yue W (1986) Phys Rev B 33:8800–8802CrossRefGoogle Scholar
  15. 15.
    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671–6687CrossRefGoogle Scholar
  16. 16.
    Hammer B, Jacobsen KW, Nørskov JK (1993) Phys Rev Lett 70:3971–3974CrossRefGoogle Scholar
  17. 17.
    Philipsen PHT, Te VG, Baerends EJ (1994) Chem Phys Lett 226:583–588CrossRefGoogle Scholar
  18. 18.
    Becke AD (1988) Phys Rev A 38:3098–3100CrossRefGoogle Scholar
  19. 19.
    Kohn W, Sham LJ (1965) Phys Rev 140:A1133–A1138CrossRefGoogle Scholar
  20. 20.
    Gao W, Abtew TA, Cai T, Sun Y, Zhang S, Zhang P (2016) Solid State Commun 10:234–235Google Scholar
  21. 21.
    Delley B (2000) J Chem Phys 113:7756–7764CrossRefGoogle Scholar
  22. 22.
    Delley B (1990) J Chem Phys 92:508–517CrossRefGoogle Scholar
  23. 23.
    Perdew JP, Burke K, Wang Y (1996) Phys Rev B 54:16533–16539CrossRefGoogle Scholar
  24. 24.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  25. 25.
    Hammer B, Hansen LB, Nørskov JK (1999) Phys Rev B 59:7413–7421CrossRefGoogle Scholar
  26. 26.
    Chen X, Chen S, Wang J (2016) Appl Surf Sci 379:291–295CrossRefGoogle Scholar
  27. 27.
    Chen X, Sun F, Chang J (2017) J Electrochem Soc 164:F616–F619CrossRefGoogle Scholar
  28. 28.
    Savin A, Johnson ER (2015) Top Curr Chem (2015) 365: 81–96Google Scholar
  29. 29.
    Civalleri B, Presti D, Dovesi R, Savin A (2012) Chem Modell 9:168–185Google Scholar
  30. 30.
    Schwalbe S, Hahn T, Liebing S, Trepte K, Kortus J (2018) J Comput Chem 39:2463–2471CrossRefGoogle Scholar
  31. 31.
    Patanachai J, Sergey MK, Francesc V (2013) J Chem Theory Comput 9:1631–1640CrossRefGoogle Scholar
  32. 32.
    Hrušák J, Friedrichs H, Schwarz H, Razafinjanahary H, Chermette H (1996) J Phys Chem 100:100–110CrossRefGoogle Scholar
  33. 33.
    Callomon JH, Hirota E, Kuchitsu K, Lafferty WJ, Maki AG, Pote CS (1976) Structure data of free polyatomic molecules. Springer, BerlinGoogle Scholar
  34. 34.
    Adamo C, Ernzerhof M, Scuseria GE (2000) J Chem Phys 112:2643–2649CrossRefGoogle Scholar
  35. 35.
    Chen X, Chang J, Yan H, Xia D (2016) J Phys Chem C 120:28912–28916CrossRefGoogle Scholar
  36. 36.
    Chen X, Qiao Q, An L, Xia D (2015) J Phys Chem C 119:11493–11498CrossRefGoogle Scholar
  37. 37.
    Parker DH, Bartram ME, Koel BE (1989) Surf Sci 217:489–510CrossRefGoogle Scholar
  38. 38.
    Steininger H, Lehwald S, Ibach H (1982) Surf Sci 123:1–17CrossRefGoogle Scholar
  39. 39.
    Gland JL, Sexton BA, Fisher GB (1980) Surf Sci 95:587–602CrossRefGoogle Scholar
  40. 40.
    Keith JA, Jerkiewicz G, Jacob T (2010) ChemPhysChem 11:2779–2794CrossRefGoogle Scholar
  41. 41.
    Fisher GB, Gland JL (1980) Surf Sci 94:446–455CrossRefGoogle Scholar
  42. 42.
    Gorelsky SI (2012) J Chem Theory Comput 8:908–914CrossRefGoogle Scholar
  43. 43.
    Zhao Y, Truhlar DG (2008) Theor Chem Accounts 119:525–525CrossRefGoogle Scholar
  44. 44.
    Chen X (2015) Phys Chem Chem Phys 17:29340–29343CrossRefGoogle Scholar
  45. 45.
    Chen X, Hu R, Bai F (2017) Materials 10:549–557CrossRefGoogle Scholar
  46. 46.
    Lee KR, Jung Y, Woo SI (2011) ACS Comb Sci 14:10–16CrossRefGoogle Scholar
  47. 47.
    Bezerra CWB, Zhang L, Lee K (2008) Electrochem Acta 53:4937–4951CrossRefGoogle Scholar
  48. 48.
    Bonakdarpour A, Lefevre M, Yang R, Jaouen F, Dahn T, Dodelet J, Dahn J (2008) Electrochem Solid-State Lett 11:B105–B108CrossRefGoogle Scholar
  49. 49.
    Lin L, Zhu Q, Xu AW (2014) J Am Chem Soc 136:11027–11033CrossRefGoogle Scholar
  50. 50.
    Sun F, Chen X (2017) Electrochem Commun 82:89–92CrossRefGoogle Scholar
  51. 51.
    Chen X, Sun F, Bai F, Xie Z (2019) Appl Surf Sci 471:256–262CrossRefGoogle Scholar
  52. 52.
    Zhang J, Wang Z, Zhu Z (2015) J Electrochem Soc 162:F796–F801CrossRefGoogle Scholar
  53. 53.
    Duan Z, Wang G (2013) J Phys Chem C 117:6284–6292CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.The Center of New Energy Materials and Technology, College of Chemistry and Chemical EngineeringSouthwest Petroleum UniversityChengduChina

Personalised recommendations