Advertisement

A computational study on the characteristics of open-shell H-bonding interaction between carbamic acid (NH2COOH) and HO2, HOS or HSO radicals

  • Adnan Ali Khan
  • Mehdi D. Esrafili
  • Aziz Ahmad
  • Emily Hull
  • Rashid AhmadEmail author
  • Saeed Ullah Jan
  • Iftikhar Ahmad
Original Paper
  • 18 Downloads

Abstract

Quantum chemical computations were applied to investigate the characteristics of open-shell hydrogen-bonding interactions in the complexes of carbamic acid (NH2COOH, CA) with HO2, HOS and HSO radicals. All the resulting complexes were studied using the MP2, B3PW91 and B3LYP computational levels and 6311++G** basis set. Geometry optimizations show that the O–H⋯O contact is stronger than N–H⋯O and S–H⋯O. The interaction energies revealed that all the radicals form stronger hydrogen bonded complexes at site-1, as confirmed by electron-density (ρ) and corresponding Laplacian (∇2ρ) values obtained by atoms in molecule (AIM) analysis. Non-covalent interaction and reduced density gradient analysis support the AIM results. Natural bond orbital analysis was employed to obtain the stabilization energies (E(2)) due to charge delocalization between the interacting units. Energy decomposition analysis suggests that, for the title complexes, the exchange energy makes a larger contribution to the total interaction energy compared to other energy terms.

Graphical abstract

Open-shell H-bondinginteraction between carbamic acid (NH2COOH) and HO2, HOS or HSOradicals

Keywords

Opened-shell hydrogen bonding Ab initio Radical DFT MP2 

Notes

Acknowledgments

We acknowledge the financial support from the Higher Education Commission of Pakistan (HEC), Project No. 20-3959/NRPU/R&D/HEC2014/234.

Supplementary material

894_2019_4070_MOESM1_ESM.docx (3 mb)
ESM 1 (DOCX 3025 kb)

References

  1. 1.
    Daniel S, Lisa KW, Dwayne EH (2012) Tropospheric OH and HO2 radicals: field measurements and model comparisons. Chem Soc Rev 41:6348–6404CrossRefGoogle Scholar
  2. 2.
    Sasho G, Rafal S, Stephane B, Davide V (2015) Environmental implications of hydroxyl radicals (•OH). Chem Rev 115(24):13051–13092CrossRefGoogle Scholar
  3. 3.
    Javier G, Miquel TS, Josep MA (2010) The reactions of SO3 with HO2 radical and H2O---HO2 radical complex. Theoretical study on the atmospheric formation of HSO5 and H2SO4. Phys Chem Chem Phys 12:2116–2125CrossRefGoogle Scholar
  4. 4.
    Ignacio PJ, Luis C (2008) Theoretical study of the electronic and hyperfine structures of the HSO and SOH radicals. Theochem 855:27–33CrossRefGoogle Scholar
  5. 5.
    Takashi Y, Akihiro W, Yoshihiro S, Yasuki E (2009) Laser spectroscopy of the A2A—X2A system for the HSO radical. J Mol Spectrosc 254:119–125CrossRefGoogle Scholar
  6. 6.
    Ravishankara AR, Hancock G, Kawasaki M, Matsumi Y (1998) Photochemistry of ozone: surprises and recent lessons. Science 280(5360):60–61CrossRefGoogle Scholar
  7. 7.
    Daniel RM, Giorgio ST, Clara AC, Trevor I, Martyn PC, Paul WS, Maria TBR, Dwayne EH (2018) Heterogeneous reaction of HO2 with airborne TiO2 particles and its implication for climate change mitigation strategies. Atmos Chem Phys 18:327–338CrossRefGoogle Scholar
  8. 8.
    Ravi J, Tapan KG (2013) Hydrogen bonding interaction between HO2 radical and selected organic acids, RCOOH (R= CH3, H, Cl and F). Chem Phys Lett 584:43–48CrossRefGoogle Scholar
  9. 9.
    Spinks JWT, Woods RJ (1990) An introduction to radiation chemistry. Wiley, New YorkGoogle Scholar
  10. 10.
    Lelieveld J, Crutzen PJ (1990) Influences of cloud photochemical processes on tropospheric ozone. 343(6255):227Google Scholar
  11. 11.
    Ravishankara AR (1997) Heterogeneous and multiphase chemistry in the troposphere. Science 276(5315):1058–1065CrossRefGoogle Scholar
  12. 12.
    DeMore WB, Sander SP, Golden DM, Hampson RF, Kurylo MJ, Howard CJ, Ravishankara AR, Kolb CE, Molina MJ (1997) Chemical kinetics and photochemical data for use in stratospheric modeling, JPL Publication 97–4, NASA, Washington, DCGoogle Scholar
  13. 13.
    Ralf S, Yana S (2010) Reversal of the relative stability of the isomeric radicals HSO and HOS upon hydration and their reactions with ozone. J Phys Chem A 114:4437–4445CrossRefGoogle Scholar
  14. 14.
    Paul SM (2005) Gas-phase radical chemistry in the troposphere. Chem Soc Rev 34:376–395CrossRefGoogle Scholar
  15. 15.
    Liuxie L, Shuang M, Quan L, Xiaolan W, Mingli Y, Laicai L (2017) Confinement of hydrogen and hydroxyl radicals in water cages: a density functional theory study. RSC Adv 7:14537CrossRefGoogle Scholar
  16. 16.
    Aloisio S, Francisco JS (1998) Existence of a hydroperoxy and water (HO2⋯H2O) radical complex. J Phys Chem A 102:1899CrossRefGoogle Scholar
  17. 17.
    Miller CE, Francisco JS (2001) The formation of a surprisingly stable HO2⋯H2SO4 complex. J Am Chem Soc 123(42):10387–10388CrossRefGoogle Scholar
  18. 18.
    Solimannejad M, Azimi G, Pejov L (2004) The HOO–SO3 radical complex: ab Initio and density-functional study. J Chem Phys Lett 391:201CrossRefGoogle Scholar
  19. 19.
    Bil A, Latajka Z (2004) The hydroperoxy radical and its closed-shell analogues: ab initio investigations. Chem Phys Lett 388:158CrossRefGoogle Scholar
  20. 20.
    Bil A, Latajka Z (2006) The Hydroperoxy radical as a hydrogen bond acceptor. HOO⋯HCl complexes-ab initio study. J Comput Chem 27:287CrossRefGoogle Scholar
  21. 21.
    Solimannejad M, Nielsen CJ, Scheiner S (2008) Complexes pairing aliphatic amines with hydroxyl and hydroperoxyl radicals: a computational study. Chem Phys Lett 466:136CrossRefGoogle Scholar
  22. 22.
    Solimannejad M, Scheiner S (2006) Stabilities and properties of complexes pairing hydroperoxyl radical with Monohalo Methanes. J Phys Chem A 110:5948CrossRefGoogle Scholar
  23. 23.
    Yang Y, Liu Y (2010) Hydrogen bond of radicals: interaction of HNO with HCO, HNO, and HOO. Int J Quantum Chem 110:1264–1272Google Scholar
  24. 24.
    Arce VB, Gargarello RM, Ortega F, Romañano V, Mizrahi M, López JMR, Cobos CJ, Airoldi C, Bernardelli C, Donati ER, Mártire DO (2015) EXAFS and DFT study of the cadmium and lead adsorption on modified silica nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 151:156–163CrossRefGoogle Scholar
  25. 25.
    Jing X, Siddarth S, Michael JJ (2014) CO2 adsorption thermodynamics over N-substituted/grafted graphenes: a DFT study. Langmuir 30:1837–1844CrossRefGoogle Scholar
  26. 26.
    Yuzhong N, Jinyun Y, Rongjun Q, Yanhong G, Na D, Hou C, Changmei S, Wenxiang W (2016) Synthesis of silica-gel-supported sulfur-capped PAMAM dendrimers for efficient hg(II) adsorption: experimental and DFT study. Ind Eng Chem Res 55:3679–3688CrossRefGoogle Scholar
  27. 27.
    Liu AH, Ma R, Song C, Yang ZZ, Yu A, Cai Y, He LN, Zhao YN, Yu B, Song QW (2012) Equimolar CO2 capture by N-substituted amino acid salts and subsequent conversion. Angew Chem Int Ed 51:11306–11310CrossRefGoogle Scholar
  28. 28.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2009) Gaussian 09, revision C.01. Gaussian, Inc., WallingfordGoogle Scholar
  29. 29.
    Perdew JP, Burke K, Wang Y (1996) Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys Rev B 54:16533–16539CrossRefGoogle Scholar
  30. 30.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Phys Condens Matter 98:5648Google Scholar
  31. 31.
    Moller C, Plesset MS (1943) Note on an approximation treatment for many-electron systems. Phys Rev 46:618CrossRefGoogle Scholar
  32. 32.
    Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650–654CrossRefGoogle Scholar
  33. 33.
    Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553CrossRefGoogle Scholar
  34. 34.
    Truhlar DG (1998) Basis-set extrapolation. Chem Phys Lett 294:45–48CrossRefGoogle Scholar
  35. 35.
    Zhao Y, Truhlar DG (2005) Infinite-basis calculations of binding energies for the hydrogen bonded and stacked tetramers of formic acid and formamide and their use for validation of hybrid DFT and ab initio methods. J Phys Chem A 109:6624–6627CrossRefGoogle Scholar
  36. 36.
    Su P, Jiang Z, Chen Z, Wu W (2014) Energy decomposition scheme based on the generalized Kohn−Sham scheme. J Phys Chem A 118:2531–2542CrossRefGoogle Scholar
  37. 37.
    Yu F (2013) Intermolecular interactions of formic acid with benzene: energy decomposition analyses with ab initio MP2 and double hybrid density functional computations. Int J Quantum Chem 113:2355–2360CrossRefGoogle Scholar
  38. 38.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S et al (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363CrossRefGoogle Scholar
  39. 39.
    Gordon MS, Schmidt MW (2005) Advances in electronic structure theory: GAMESS a decade later. In: Dykstra CE, Frenking G, Kim KS, Scuseria GE (eds) Theory and applications of computational chemistry: the first forty years. Amsterdam, Elsevier, pp 1167–1189CrossRefGoogle Scholar
  40. 40.
    Gilli P, Bertolasi V, Ferretti V, Gilli G (1994) Covalent nature of the strong Homonuclear hydrogen bond. Study of the O–H–O system by crystal structure correlation methods. J Am Chem Soc 116:909–915CrossRefGoogle Scholar
  41. 41.
    Koch U, Popelier PLA (1995) Characterization of C-H-O hydrogen bonds on the basis of the charge density. J Phys Chem 99:9747–9754CrossRefGoogle Scholar
  42. 42.
    Varadwaj PR, Varadwaj A, Jin BY (2014) Halogen bonding interaction of chloromethane with several nitrogen donating molecules: addressing the nature of the chlorine surface σ-hole. Phys Chem Chem Phys 16:19573CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for Computational Materials ScienceUniversity of MalakandChakdaraPakistan
  2. 2.Department of ChemistryUniversity of MalakandChakdaraPakistan
  3. 3.Department of Chemistry, Faculty of Basic ScienceUniversity of MaraghehMaraghehIran
  4. 4.CAS Key Laboratory of Carbon MaterialsInstitute of Coal ChemistryTaiyuanPeople’s Republic of China
  5. 5.Eurofins Lancaster LaboratoriesLancasterUSA
  6. 6.Department of PhysicsAbbottabad University of Science and TechnologyHavelianPakistan

Personalised recommendations