Advertisement

Metal ions doped into merocyanine form of coumarin derivatives: nonlinear optical molecular switches

  • Ali Muhammad Arif
  • Afifa Yousaf
  • Rong-Lin Zhong
  • Mansoor Akhtar
  • Shabbir Muhammad
  • Hong-liang XuEmail author
  • Zhong-Min SuEmail author
Original Paper
  • 71 Downloads

Abstract

In the present study, DFT calculations are carried out on domestically designed 7-methyl-2-phenyl-5’H-spiro[chromene-4,2′-chromeno[3,4-e][1,3]oxazin]-5′-one spiropyran and merocyanine derivatives to recognize alkali and alkaline earth metal ions. Detection of these metal ions can be attained by exploiting the variation of the second-order nonlinear optical properties. Merocyanine forms of these derivatives exhibit the ability to complex with different metal ions (Li+, Na+, K+, and Ca2+), which is associated with large contrasts in the hyper-Rayleigh scattering (HRS) response as a function of metal size and charge. Interestingly, in this study, Mero-Li+ shows significant nonlinear optical response with dynamic HRS first hyperpolarizability amounting to 7607 a.u., which is about nine times higher than its corresponding spiro form (846 a.u.) at the CAM-B3LYP/6-311G* level of theory. The present investigation clarifies the effect of metal nature on the enhancement of the first hyperpolarizability between the closed and open forms of the studied coumarin derivatives.

Graphical abstract

The coumarin-based compound 3 demonstrate the higher second-order NLO responses as a function of metal cation size and charges. Complexation of smaller alkali metal ions leads to the formation of stronger metal-ligand bonds, larger geometrical relaxations and significant enhancement of the HRS first hyperpolarizabilities. This present investigation elucidates the effect of metal nature on the enhancement of the first hyperpolarizability between the closed and open forms of studied coumarin derivatives

Keywords

First hyperpolarizability Molecular switches Merocyanine Metal doping NLO 

Notes

Acknowledgments

H-L Xu acknowledges support for the project funded by the China Postdoctoral Science Foundation (2014 M560227) and the Fundamental Research Funds for the Central Universities 2412018ZD008. S Muhamma d at the King Khalid University is thankful to the Deanship of Scientific Research at King Khalid University for funding this work through Research Group Project under grant number (R. G. P.1/165/40).

Compliance with ethical standards

Conflict of interest

There are no conflicts to declare.

Supplementary material

894_2019_4068_MOESM1_ESM.docx (84 kb)
ESM 1 (DOCX 84 kb)

References

  1. 1.
    Coe BJ (1999) Molecular materials possessing switchable quadratic nonlinear optical properties. Chem Eur J 5(9):2464–2471CrossRefGoogle Scholar
  2. 2.
    Delaire JA, Nakatani K (2000) Linear and nonlinear optical properties of photochromic molecules and materials. Chem Rev 100(5):1817–1846PubMedCrossRefGoogle Scholar
  3. 3.
    Lupo D (1995) Book review. Zyss J (ed) Molecular nonlinear optics: materials, physics, and devices. Academic, San Diego. Adv Mater 7(2):248–249Google Scholar
  4. 4.
    Zyss J (1994) Quantum electronics-principles and applications. Molecular nonlinear optics. Academic, San Diego, p iiGoogle Scholar
  5. 5.
    Boixel J, Guerchais V, Le Bozec H, Chantzis A, Jacquemin D, Colombo A et al (2015) Sequential double second-order nonlinear optical switch by an acido-triggered photochromic cyclometallated platinum(ii) complex. Chem Commun 51(37):7805–7808CrossRefGoogle Scholar
  6. 6.
    Gauthier N, Argouarch G, Paul F, Toupet L, Ladjarafi A, Costuas K et al (2011) Electron-rich iron/ruthenium arylalkynyl complexes for third-order nonlinear optics: redox-switching between three states. Chem Eur J 17(20):5561–5577CrossRefGoogle Scholar
  7. 7.
    Sanguinet L, Pozzo J-L, Rodriguez V, Adamietz F, Castet F, Ducasse L et al (2005) Acido- and phototriggered NLO properties enhancement. J Phys Chem B 109(22):11139–11150PubMedCrossRefGoogle Scholar
  8. 8.
    Plaquet A, Champagne B, Kulhánek J, Bureš F, Bogdan E, Castet F et al (2011) Effects of the nature and length of the π-conjugated bridge on the second-order nonlinear optical responses of push–pull molecules including 4,5-Dicyanoimidazole and their protonated forms. Chem Phys Chem 12(17):3245–3252PubMedCrossRefGoogle Scholar
  9. 9.
    Cariati E, Dragonetti C, Lucenti E, Nisic F, Righetto S, Roberto D et al (2014) An acido-triggered reversible luminescent and nonlinear optical switch based on a substituted styrylpyridine: EFISH measurements as an unusual method to reveal a protonation–deprotonation NLO contrast. Chem Commun 50(13):1608–1610CrossRefGoogle Scholar
  10. 10.
    Sliwa M, Spangenberg A, Malfant I, Lacroix PG, Métivier R, Pansu RB et al (2008) Structural, optical, and theoretical studies of a thermochromic organic crystal with reversibly variable second harmonic generation. Chem Mater 20(12):4062–4068CrossRefGoogle Scholar
  11. 11.
    Pielak K, Bondu F, Sanguinet L, Rodriguez V, Champagne B, Castet F (2017) Second-order nonlinear optical properties of multiaddressable indolinooxazolidine derivatives: joint computational and hyper-Rayleigh scattering investigations. J Phys Chem C 121(3):1851–1860CrossRefGoogle Scholar
  12. 12.
    Green KA, Cifuentes MP, Samoc M, Humphrey MG (2011) Metal alkynyl complexes as switchable NLO systems. Coord Chem Rev 255(21):2530–2541CrossRefGoogle Scholar
  13. 13.
    Di Bella S, Oliveri IP, Colombo A, Dragonetti C, Righetto S, Roberto D (2012) An unprecedented switching of the second-order nonlinear optical response in aggregate bis(salicylaldiminato)zinc(ii) Schiff-base complexes. Dalton Trans 41(23):7013–7016PubMedCrossRefGoogle Scholar
  14. 14.
    Castet F, Rodriguez V, Pozzo J-L, Ducasse L, Plaquet A, Champagne B (2013) Design and characterization of molecular nonlinear optical switches. Acc Chem Res 46(11):2656–2665PubMedCrossRefGoogle Scholar
  15. 15.
    Koçer A, Walko M, Meijberg W, Feringa BL (2005) A light-actuated Nanovalve derived from a channel protein. Science 309(5735):755CrossRefGoogle Scholar
  16. 16.
    Klajn R (2014) Spiropyran-based dynamic materials. Chem Soc Rev 43(1):148–184PubMedCrossRefGoogle Scholar
  17. 17.
    Chen KJ, Laurent AD, Jacquemin D (2014) Strategies for designing diarylethenes as efficient nonlinear optical switches. J Phys Chem C 118(8):4334–4345CrossRefGoogle Scholar
  18. 18.
    Jaunet-Lahary T, Chantzis A, Chen KJ, Laurent AD, Jacquemin D (2014) Designing efficient azobenzene and azothiophene nonlinear optical photochromes. J Phys Chem C 118(49):28831–28841CrossRefGoogle Scholar
  19. 19.
    Lin J, Sa R, Zhang M, Wu K (2015) Exploring second-order nonlinear optical properties and switching ability of a series of dithienylethene-containing, cyclometalated platinum complexes: a theoretical investigation. J Phys Chem A 119(29):8174–8181PubMedCrossRefGoogle Scholar
  20. 20.
    Aubert V, Guerchais V, Ishow E, Hoang-Thi K, Ledoux I, Nakatani K et al (2008) Efficient Photoswitching of the Nonlinear optical properties of dipolar photochromic zinc(II) complexes. Angew Chem Int Ed 47(3):577–580CrossRefGoogle Scholar
  21. 21.
    Castet F, Benoit C (2016) Switching of the nonlinear optical responses of anil derivatives: from dilute solutions to the solid state. Tautomerism: concepts and applications in science and technology. Wiley-VCH, Weinheim, pp 175–202CrossRefGoogle Scholar
  22. 22.
    Plaquet A, Guillaume M, Champagne B, Castet F, Ducasse L, Pozzo J-L et al (2008) In silico optimization of merocyanine-spiropyran compounds as second-order nonlinear optical molecular switches. Phys Chem Chem Phys 10(41):6223–6232PubMedCrossRefGoogle Scholar
  23. 23.
    Nitadori H, Ordronneau L, Boixel J, Jacquemin D, Boucekkine A, Singh A et al (2012) Photoswitching of the second-order nonlinearity of a tetrahedral octupolar multi DTE-based copper(i) complex. Chem Commun 48(84):10395–10397CrossRefGoogle Scholar
  24. 24.
    Coe BJ, Houbrechts S, Asselberghs I, Persoons A (1999) Efficient, reversible redox-switching of molecular first Hyperpolarizabilities in ruthenium(II) complexes possessing large quadratic optical nonlinearities. Angew Chem Int Ed 38(3):366–369CrossRefGoogle Scholar
  25. 25.
    Boubekeur-Lecaque L, Coe BJ, Clays K, Foerier S, Verbiest T, Asselberghs I (2008) Redox-switching of nonlinear optical behavior in Langmuir−Blodgett thin films containing a ruthenium(II) ammine complex. J Am Chem Soc 130(11):3286–3287PubMedCrossRefGoogle Scholar
  26. 26.
    Liu C-G, Guan X-H, Su Z-M (2011) Computational study on redox-switchable 2D Second-Order Nonlinear optical properties of push−pull mono-tetrathiafulvalene-bis(salicylaldiminato) Zn(II) Schiff Base complexes. J Phys Chem C 115(13):6024–6032CrossRefGoogle Scholar
  27. 27.
    Beaujean P, Bondu F, Plaquet A, Garcia-Amorós J, Cusido J, Raymo FM et al (2016) Oxazines: a new class of second-order nonlinear optical switches. J Am Chem Soc 138(15):5052–5062PubMedCrossRefGoogle Scholar
  28. 28.
    Giraud M, Léaustic A, Guillot R, Yu P, Lacroix PG, Nakatani K et al (2007) Dithiazolylethene-based molecular switches for nonlinear optical properties and fluorescence: synthesis, crystal structure and ligating properties. J Mater Chem 17(41):4414–4425CrossRefGoogle Scholar
  29. 29.
    Plaquet A, Champagne B, Castet F, Ducasse L, Bogdan E, Rodriguez V et al (2009) Theoretical investigation of the dynamic first hyperpolarizability of DHA–VHF molecular switches. New J Chem 33(6):1349–1356CrossRefGoogle Scholar
  30. 30.
    Garza AJ, Osman OI, Wazzan NA, Khan SB, Scuseria GE, Asiri AM (2013) Photochromic and nonlinear optical properties of fulgides: a density functional theory study. Comput Theor Chem 1022:82–85CrossRefGoogle Scholar
  31. 31.
    Sliwa M, Létard S, Malfant I, Nierlich M, Lacroix PG, Asahi T et al (2005) Design, synthesis, structural and nonlinear optical properties of photochromic crystals: toward reversible molecular switches. Chem Mater 17(18):4727–4735CrossRefGoogle Scholar
  32. 32.
    Bogdan E, Plaquet A, Antonov L, Rodriguez V, Ducasse L, Champagne B et al (2010) Solvent effects on the second-order nonlinear optical responses in the keto−enol equilibrium of a 2-Hydroxy-1-naphthaldehyde derivative. J Phys Chem C 114(29):12760–12768CrossRefGoogle Scholar
  33. 33.
    De S, Ray M, Pati AY, Das PK (2013) Base triggered enhancement of first Hyperpolarizability of a keto–enol tautomer. J Phys Chem B 117(48):15086–15092PubMedCrossRefGoogle Scholar
  34. 34.
    Asselberghs I, Zhao Y, Clays K, Persoons A, Comito A, Rubin Y (2002) Reversible switching of molecular second-order nonlinear optical polarizability through proton-transfer. Chem Phys Lett 364(3):279–283CrossRefGoogle Scholar
  35. 35.
    van Bezouw S, Campo J, Lee S-H, Kwon OP, Wenseleers W (2015) Organic compounds with large and high-contrast pH-switchable Nonlinear optical response. J Phys Chem C 119(37):21658–21663CrossRefGoogle Scholar
  36. 36.
    Wang W-Y, Ma N-N, Sun S-L, Qiu Y-Q (2014) Impact of redox stimuli on ferrocene–Buckybowl complexes: switchable optoelectronic and Nonlinear optical properties. Organometallics 33(13):3341–3352CrossRefGoogle Scholar
  37. 37.
    Minkin VI Photoswitchable molecular systems based on Spiropyrans and Spirooxazines. Molecular switchesGoogle Scholar
  38. 38.
    Willner I, Lion-Dagan M, Katz E (1996) Photostimulation of dinitrospiropyran-modified glucose oxidase in the presence of DNP-antibody-A biphase-switch for the amperometric transduction of recorded optical signals. Chem Commun (5):623–624Google Scholar
  39. 39.
    Ye J-T, Wang L, Wang H-Q, Chen Z-Z, Qiu Y-Q, Xie H-M (2017) Spirooxazine molecular switches with nonlinear optical responses as selective cation sensors. RSC Adv 7(2):642–650CrossRefGoogle Scholar
  40. 40.
    Champagne B, Plaquet A, Pozzo J-L, Rodriguez V, Castet F (2012) Nonlinear optical molecular switches as selective cation sensors. J Am Chem Soc 134(19):8101–8103PubMedCrossRefGoogle Scholar
  41. 41.
    Tamai N, Miyasaka H (2000) Ultrafast dynamics of photochromic systems. Chem Rev 100(5):1875–1890PubMedCrossRefGoogle Scholar
  42. 42.
    Huang Y, Li F, Ye C, Qin M, Ran W, Song Y (2015) A photochromic sensor microchip for high-performance multiplex metal ions detection. Sci Rep 5:9724PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Sun Y-F, Xu S-H, Wu R-T, Wang Z-Y, Zheng Z-B, Li J-K et al (2010) The synthesis, structure and photoluminescence of coumarin-based chromophores. Dyes Pigments 87(2):109–118CrossRefGoogle Scholar
  44. 44.
    Huang K, Jiao X, Liu C, Wang Q, Qiu X, Zheng D et al (2017) Highly selective and sensitive fluorescent probe for mercury ions based on a novel rhodol-coumarin hybrid dye. Dyes Pigments 142:437–446CrossRefGoogle Scholar
  45. 45.
    Norman P (2011) A perspective on nonresonant and resonant electronic response theory for time-dependent molecular properties. Phys Chem Chem Phys 13(46):20519–20535PubMedCrossRefGoogle Scholar
  46. 46.
    Zhang T, Yan L-K, Cong S, Guan W, Su Z-M (2014) Prediction of second-order nonlinear optical properties of Wells–Dawson polyoxometalate derivatives [X–C(CH2O)3P2M′3M15O59]6− (X = NO2, NH2, and CH3, M′ = V and Nb, M = W and Mo). Inorg Chem Front 1(1):65–70CrossRefGoogle Scholar
  47. 47.
    Wang L-J, Zhong R-L, Sun S-L, Xu H-L, Pan X-M, Su Z-M (2014) The V-shaped polar molecules encapsulated into Cs (10528)-C72: stability and nonlinear optical response. Dalton Trans 43(25):9655–9660PubMedCrossRefGoogle Scholar
  48. 48.
    Wang L-J, Sun S-L, Zhong R-L, Liu Y, Wang D-L, Wu H-Q et al (2013) The encapsulated lithium effect of Li@C60Cl8 remarkably enhances the static first hyperpolarizability. RSC Adv 3(32):13348–13352CrossRefGoogle Scholar
  49. 49.
    Gao Y, Zhong R-L, Xu H-L, Sun S-L, Su Z-M (2015) The effect of ring sizes and alkali metal cations on interaction energy, charge transfer and nonlinear optical properties of crown ether derivatives. RSC Adv 5(38):30107–30119CrossRefGoogle Scholar
  50. 50.
    Xu H-L, Zhang C-C, Sun S-L, Su Z-M (2012) Assembly of Sandwich-like supermolecules Li salts CpLi-C60: structures, stabilities, and nonlinear optical properties. Organometallics 31(12):4409–4414CrossRefGoogle Scholar
  51. 51.
    Champagne B, Perpète EA, Jacquemin D, van Gisbergen SJA, Baerends E-J, Soubra-Ghaoui C et al (2000) Assessment of conventional density functional schemes for computing the dipole moment and (hyper)polarizabilities of push−pull π-conjugated systems. J Phys Chem A 104(20):4755–4763CrossRefGoogle Scholar
  52. 52.
    Herebian D, Wieghardt KE, Neese F (2003) Analysis and interpretation of metal-radical coupling in a series of square planar nickel complexes: correlated ab initio and density functional investigation of [Ni(LISQ)2] (LISQ=3,5-di-tert-butyl-o-diiminobenzosemiquinonate(1-)). J Am Chem Soc 125(36):10997–11005PubMedCrossRefGoogle Scholar
  53. 53.
    Espa D, Pilia L, Marchiò L, Artizzu F, Serpe A, Mercuri ML et al (2012) Mixed-ligand Pt(ii) dithione-dithiolato complexes: influence of the dicyanobenzodithiolato ligand on the second-order NLO properties. Dalton Trans 41(12):3485–3493PubMedCrossRefGoogle Scholar
  54. 54.
    Hu Y-Y, Sun S-L, Zhong R-L, Xu H-L, Su Z-M (2011) Novel trumpet-shaped conjugation bridge (carbon nanocone) for nonlinear optical materials. J Phys Chem C 115(38):18545–18551CrossRefGoogle Scholar
  55. 55.
    Zhang C-C, Xu H-L, Hu Y-Y, Sun S-L, Su Z-M (2011) Quantum chemical research on structures, linear and nonlinear optical properties of the Li@n-Acenes salt (n = 1, 2, 3, and 4). J Phys Chem A 115(10):2035–2040PubMedCrossRefGoogle Scholar
  56. 56.
    Tawada Y, Tsuneda T, Yanagisawa S, Yanai T, Hirao K (2004) A long-range-corrected time-dependent density functional theory. J Chem Phys 120(18):8425–8433PubMedCrossRefGoogle Scholar
  57. 57.
    Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393(1):51–57CrossRefGoogle Scholar
  58. 58.
    Plaquet A, Champagne B, Castet F (2014) Nonlinear optical molecular switches for alkali ion identification. Molecules 19(7):10574PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Paramonov SV, Lokshin V, Fedorova OA (2011) Spiropyran, chromene or spirooxazine ligands: insights into mutual relations between complexing and photochromic properties. J Photochem Photobiol C: Photochem Rev 12(3):209–236CrossRefGoogle Scholar
  60. 60.
    Valeur B, Leray I (2000) Design principles of fluorescent molecular sensors for cation recognition. Coord Chem Rev 205(1):3–40CrossRefGoogle Scholar
  61. 61.
    de Silva AP, Vance TP, West MES, Wright GD (2008) Bright molecules with sense, logic, numeracy and utility. Org Biomolec Chem 6(14):2468–2480CrossRefGoogle Scholar
  62. 62.
    Tomasi J, Persico M (1994) Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent. Chem Rev 94(7):2027–2094CrossRefGoogle Scholar
  63. 63.
    Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105(8):2999–3094PubMedCrossRefGoogle Scholar
  64. 64.
    Bersohn R, Pao YH, Frisch HL (1966) Double-quantum light scattering by molecules. J Chem Phys 45(9):3184–3198CrossRefGoogle Scholar
  65. 65.
    Reis H (2006) Problems in the comparison of theoretical and experimental hyperpolarizabilities revisited. J Chem Phys 125(1):014506PubMedCrossRefGoogle Scholar
  66. 66.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR et al (2009) Gaussian 09 revision a.02. Gaussian Inc, Wallingford Google Scholar
  67. 67.
    Verbiest TC, Rodriguez K (2009) Second-order nonlinear optical characterizations techniques: an introduction. CRC, New YorkGoogle Scholar
  68. 68.
    Zhang L, Qi D, Zhao L, Chen C, Bian Y, Li W (2012) Density functional theory study on subtriazaporphyrin derivatives: dipolar/octupolar contribution to the second-order nonlinear optical activity. J Phys Chem A 116(41):10249–10256PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Functional Material Chemistry, Faculty of ChemistryNortheast Normal UniversityJilinPeople’s Republic of China
  2. 2.Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical ChemistryJilin UniversityJilinPeople’s Republic of China
  3. 3.Department of Physics, College of ScienceKing Khalid UniversityAbhaSaudi Arabia
  4. 4.School of Chemistry and Environmental EngineeringChangchun University of Science and TechnologyJilinPeople’s Republic of China

Personalised recommendations