Thermal decomposition of syn- and anti-dihydropyrenes; functional group-dependent decomposition pathway

  • Bibi Saima
  • Yan Alexander Wang
  • Riaz Hussain
  • Shabbir Muhammad
  • Khurshid AyubEmail author
Original Paper


Syn and anti dihydropyrene (DHP) are excellent thermochromes, and therefore extensively studied for their thermochromic and photochromic properties, respectively. However, they suffer from thermal decomposition due to thermal instability. In this study, we thoroughly investigated pathways for the thermal decomposition of anti- and syn- dihydropyrenes through computational methods. The decomposition pathways include sigmatropic shift and hemolytic and heterolytic (cationic and anionic) cleavages. The decomposition pathway is influenced not only by the dihydropyrene (syn- or anti-) but also by the functional groups present. For anti-dihydropyrenes, sigmatropic shift is the most plausible pathways for CN and CHO internal groups. The cascade of sigmatropic shifts is followed by elimination to deliver substituted pyrenes. For CH3- and H- dihydropyrenes, hemolytic cleavage of the internal groups is the most plausible pathway for decomposition to pyrenes. The pathway is changed to heterolytic cleavage when the internal groups on the dihydropyrenes are Cl, Br, and SMe. Comparison of the activation barriers for syn (30.18 kcal mol−1) and anti (32.10 kcal mol−1) dimethyldihydropyrenes for radical pathway reveal that decomposition of syn- DHP is more facile over anti-, which is consistent with the experimental observation. The decomposition pathway for syn-dihydropyrene is also hemolytic in cleavage when the internal groups are methyl and hydrogen. Syn-dihydropyrenes (symmetrical or unsymmetrical) bearing CN group do not follow sigmatropic shift, quite contrary to the anti-dihydropyrene. The lack of tendency of the syn-dihydropyrene for sigmatropic shift is rationalized on the planarity of the scaffold. The results of the theoretical study are consistent with the experimental observations. The results here help in understanding the behavior of substituents on the dihydropyrene scaffold, which will be useful in designing new molecules with improved thermal stabilities.

Graphical abstract

Functional group dependent decomposition pathways of dihydropyrenes


Cyclophanediene Dihydropyrene Density functional theory Sigmatropic shift Decomposition pathways 



The authors acknowledge the financial support of the Higher Education Commission of Pakistan and COMSATS University, Abbottabad Campus.

Compliance with ethical standards

The author from the King Khalid University is thankful to Deanship of Scientific Research at King Khalid University for funding the work through Research Group Project under grant number (R. G. P.1/165/40).

Ethical statements

1. The manuscript has not been submitted to more than one journal for simultaneous consideration.

2. The manuscript has not been published previously (partly or in full).

3. A single study is not split up into several parts to increase the quantity of submissions and submitted to various journals or to one journal over time (e.g., “salami-publishing”).

4. No data have been fabricated or manipulated (including images) to support our conclusions.

5. No data, text, or theories by others are presented as if they were the author’s own (“plagiarism”). Proper acknowledgements to other’s work if quoted.


  1. 1.
    Mitchell RH, Iyer VS, Mahadevan R et al (1996). J Org Chem 61(15):5116–5120CrossRefGoogle Scholar
  2. 2.
    Mitchell RH, Ward TR, Chen Y et al (2003). J Am Chem Soc 125(10):2974–2988PubMedCrossRefGoogle Scholar
  3. 3.
    Mitchell RH, Boekelheide V (1974). J Am Chem Soc 96(5):1547–1557CrossRefGoogle Scholar
  4. 4.
    Saima B, Khan A, Nisa RU et al (2016). J Mol Model 22(4):81–89PubMedCrossRefGoogle Scholar
  5. 5.
    Mitchell RH, Boekelheide V (1970). J Chem Soc D Chem Commun 92(11):3510–3512CrossRefGoogle Scholar
  6. 6.
    Mitchell RH, Chaudhary M, Kamada T et al (1986). Tetrahedron 42(6):1741–1744CrossRefGoogle Scholar
  7. 7.
    Ayub K, Zhang R, Robinson SG et al (2008). J Org Chem 73(2):451–456PubMedCrossRefGoogle Scholar
  8. 8.
    Ayub K, Li R, Bohne C et al (2011). J Am Chem Soc 133(11):4040–4045PubMedCrossRefGoogle Scholar
  9. 9.
    Khan N, Sheikh NS, Khan AF et al (2015). J Mol Model 21(6):148–159PubMedCrossRefGoogle Scholar
  10. 10.
    Ayub K, Mitchell RH (2014). J Org Chem 79(2):664–678PubMedCrossRefGoogle Scholar
  11. 11.
    Mitchell RH, Boekelheide V (1970). J Am Chem Soc 92(11):3510–3512CrossRefGoogle Scholar
  12. 12.
    Mitchell RH, Bodwell GJ, Vinod TK, Weerawarna KS (1988). Tetrahedron Lett 29(27):3287–3290CrossRefGoogle Scholar
  13. 13.
    Ayub K (2008) PhD thesis, University of VictoriaGoogle Scholar
  14. 14.
    Sinha S, Raj A (2016). Phys Chem Chem Phys 18:8120–8131PubMedCrossRefGoogle Scholar
  15. 15.
    Karmakar S, Datta A (2017). J Org Chem 82:1558–1566PubMedCrossRefGoogle Scholar
  16. 16.
    Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson GA (2009) Gaussian 09. Gaussian Inc., WallingfordGoogle Scholar
  17. 17.
    Becke AD (1993). J Chem Phys 98(7):5648–5652CrossRefGoogle Scholar
  18. 18.
    Lee C, Yang W, Parr RG (1988). Phys Rev B 37(2):785–789CrossRefGoogle Scholar
  19. 19.
    Williams RV, Edwards WD, Mitchell RH, Robinson SG (2005). J Am Chem Soc 127(46):16207–16214PubMedCrossRefGoogle Scholar
  20. 20.
    Saima B, Khan N, Al-Faiyz YSS et al (2019). J Mol Graph Model 88:261–272PubMedCrossRefGoogle Scholar
  21. 21.
    Mitchell RH, Blunden R, Hollett G et al (2005). J Org Chem 70(2):675–680PubMedCrossRefGoogle Scholar
  22. 22.
    Leach AG, Catak S, Houk KN (2002). Chem Eur J 8(6):1290–1299PubMedCrossRefGoogle Scholar
  23. 23.
    Babar A, Khalid H, Ayub K et al (2014). J Mol Struct 1072:221–227CrossRefGoogle Scholar
  24. 24.
    Fazl-i-Sattar, Ullah Z, Ata-ur-Rahman et al (2015). Spectrochim Acta A Mol Biomol Spectrosc 141:71–79PubMedCrossRefGoogle Scholar
  25. 25.
    Specowius V, Bendrath F, Winterberg M et al (2012). Adv Synth Catal 354(6):1163–1169CrossRefGoogle Scholar
  26. 26.
    Iaroshenko VO, Ostrovskyi D, Ayub K et al (2013). Adv Synth Catal 355(2–3):576–588Google Scholar
  27. 27.
    Jeilani YA, Nguyen HT, Cardelino BH, Nguyen MT (2014). Chem Phys Lett 598:58–64CrossRefGoogle Scholar
  28. 28.
    Gutierrez O, Strick BF, Thomson RJ, Tantillo DJ (2013). Chem Sci 4:3997–4003CrossRefGoogle Scholar
  29. 29.
    Painter PP, Siebert MR, Tantillo DJ (2015). J Org Chem 80:11699–11705PubMedCrossRefGoogle Scholar
  30. 30.
    Koch R, Finnerty JJ, Murali S, Wentrup C (2012). J Org Chem 77:1749–1759PubMedCrossRefGoogle Scholar
  31. 31.
    Hou S, Li X, Xu J (2014). Org Biomol Chem 12:4952–4963PubMedCrossRefGoogle Scholar
  32. 32.
    Nisa RU, Hashmi MA, Sajjad S et al (2016). J Organomet Chem 808:78–86CrossRefGoogle Scholar
  33. 33.
    Mahmood T, Kosar N, Ayub K (2017). Tetrahedron 73:3521–3528CrossRefGoogle Scholar
  34. 34.
    Narayanan A, Nirmalchandar A, Paknia F et al (2018). Top Catal 61:652–663CrossRefGoogle Scholar
  35. 35.
    Gomes RFA, Coelho JAS, Afonso CAM (2019). ChemSusChem 12:420–425PubMedCrossRefGoogle Scholar
  36. 36.
    Campos RB, Tantillo DJ (2018). J Org Chem 83:1073–1076PubMedCrossRefGoogle Scholar
  37. 37.
    Lebœuf D, Gandon V, Ciesielski J, Frontier AJ (2012). J Am Chem Soc 134:6296–6308PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Kudernac T, Kobayashi T, Uyama A et al (2013). J Phys Chem A 117:8222–8229PubMedCrossRefGoogle Scholar
  39. 39.
    Fukazawa A, Oshima H, Shiota Y et al (2013). J Am Chem Soc 135:1731–1734PubMedCrossRefGoogle Scholar
  40. 40.
    Boekelheide V, Sturm E (1969). J Am Chem Soc 91(4):902–908CrossRefGoogle Scholar
  41. 41.
    Boekelheide V, Hylton TA (1970). J Am Chem Soc 92(12):3669–3675CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Bibi Saima
    • 1
  • Yan Alexander Wang
    • 2
  • Riaz Hussain
    • 3
  • Shabbir Muhammad
    • 4
    • 5
  • Khurshid Ayub
    • 1
    Email author
  1. 1.Department of ChemistryCOMSATS University, Abbottabad CampusAbbottabadPakistan
  2. 2.Department of ChemistryUniversity of British ColumbiaVancouverCanada
  3. 3.Department of ChemistryUniversity of OkaraOkaraPakistan
  4. 4.Department of Physics, College of ScienceKing Khalid UniversityAbhaSaudi Arabia
  5. 5.Research Center for Advanced Materials Science (RCAMS)King Khalid UniversityAbhaSaudi Arabia

Personalised recommendations