Advertisement

Relativistic spectral bounds for the general molecular potential: application to a diatomic molecule

  • Hasan Fatih Kisoglu
  • Hilmi YanarEmail author
  • Oktay Aydogdu
  • Mustafa Salti
Original Paper
  • 60 Downloads

Abstract

We tackle with the Dirac equation in the presence of the general molecular potential (GMP). The spin symmetric solution of the relativistic wave equation is obtained by considering the Pekeris-type approximation scheme to deal with the centrifugal term, and in order to solve second-order differential equation, the asymptotic iteration method (AIM) is used. The closed form of the energy eigenvalue equation is found out for any values of the angular momentum quantum number. We calculate the relativistic vibrational bound state energies of 51Δg state of Na2 molecule and compare them with the Rydberg–Klein–Rees (RKR) data. We show that relativistic vibrational energies of this molecule, which are found in the spin symmetric case, are more convenient with experimental RKR data than non-relativistic vibrational energies. We also obtain normalization constant by considering inductive approach and investigate the radial eigenfunctions and probability density functions corresponding to different eigenvalues graphically for the Na2(51Δg) molecule.

Keywords

General molecular potential Diatomic molecules Bound states Asymptotic iteration method Dirac equation 

Notes

References

  1. 1.
    Tang HM, Liang GC et al (2014) Can J Chem 92:341CrossRefGoogle Scholar
  2. 2.
    Jia CS, Zhang LH et al (2015) J Mol Spectrosc 311:69CrossRefGoogle Scholar
  3. 3.
    Liu JY, Zhang GD, Jia CS (2013) Phys Lett A 377:1444CrossRefGoogle Scholar
  4. 4.
    Mukoyama T, Adachi H (1986) Bull Inst Chem Res Kyoto Univ 64:133Google Scholar
  5. 5.
    Morse MD (1986) Chem Rev 86:1049CrossRefGoogle Scholar
  6. 6.
    Jia CS, Liu JY, He L, Sung LT (2007) Phys Scr 75:388CrossRefGoogle Scholar
  7. 7.
    Arima A, Harvey M, Shimizu K (1969) Phys Lett B 30:517CrossRefGoogle Scholar
  8. 8.
    Hecht KT, Adler A (1969) Nucl Phys A 137:129CrossRefGoogle Scholar
  9. 9.
    Ginocchio JN (1997) Phys Rev Lett 78:436CrossRefGoogle Scholar
  10. 10.
    Jia CS, Dai JW et al (2015) Phys Lett A 379:137CrossRefGoogle Scholar
  11. 11.
    Zhang LH, Li XP, Jia CS (2008) Phys Lett A 372:2201CrossRefGoogle Scholar
  12. 12.
    Aydogdu O, Sever R (2010) Ann Phys 325:373CrossRefGoogle Scholar
  13. 13.
    Aydogdu O, Sever R (2010) Few-Body Syst 47:193CrossRefGoogle Scholar
  14. 14.
    Aydogdu O, Sever R (2011) Phys Lett B 703:379CrossRefGoogle Scholar
  15. 15.
    Xu Y, He S, Jia CS (2008) J Phys A, Math Theor 41:255302CrossRefGoogle Scholar
  16. 16.
    Wei GF, Dong SH (2008) Phys Lett A 373:49CrossRefGoogle Scholar
  17. 17.
    Wei GF, Dong SH (2010) Phys Lett B 686:288CrossRefGoogle Scholar
  18. 18.
    Oyewumi KJ, Akoshile CO (2010) Eur Phys J A 45:311CrossRefGoogle Scholar
  19. 19.
    Taskin F (2009) Int J Theor Phys 48:1142CrossRefGoogle Scholar
  20. 20.
    Chen T, Liu JY, Jia CS (2009) Phys Scr 79:055002CrossRefGoogle Scholar
  21. 21.
    Zhang P, Long HC, Jia CS (2016) Eur Phys J Plus 131:117CrossRefGoogle Scholar
  22. 22.
    Jia CS, Shui ZW (2015) Eur Phys J A 51:144CrossRefGoogle Scholar
  23. 23.
    Yanar H, Aydogdu O, Salt M (2016) Mol Phys 114:3134CrossRefGoogle Scholar
  24. 24.
    Rydberg R (1933) Z Phys 80:514CrossRefGoogle Scholar
  25. 25.
    Klein O (1932) Z Phys 76:226CrossRefGoogle Scholar
  26. 26.
    Rees ALG (1947) Proc Phys Soc 59:998CrossRefGoogle Scholar
  27. 27.
    Chang RY, Tsai CC et al (2005) J Chem Phys 123:224303CrossRefGoogle Scholar
  28. 28.
    Liu JY, Hu XT, Jia CS (2014) Can J Chem 92:40CrossRefGoogle Scholar
  29. 29.
    Hu XT, Zhang LH, Jia CS (2014) J Mol Spectrosc 297:21CrossRefGoogle Scholar
  30. 30.
    Tang HM, Liang GC et al (2014) Can J Chem 92:201CrossRefGoogle Scholar
  31. 31.
    Ocak Z, Yanar H, Salti M, Aydogdu O (2018) Chem Phys 513 :252CrossRefGoogle Scholar
  32. 32.
    Qi P et al (2006) J Chem Phys 124:184304CrossRefGoogle Scholar
  33. 33.
    Liu Y et al (2001) J Chem Phys 115:3647CrossRefGoogle Scholar
  34. 34.
    Li D, Xie F, Li L (2008) Chem Phys Lett 458:267CrossRefGoogle Scholar
  35. 35.
    Ciftci H, Hall RL, Saad N (2003) J Phys A: Math Gen 36:11 807CrossRefGoogle Scholar
  36. 36.
    Ciftci H, Hall RL, Saad N (2013) Centr Eur J Phys 11:37Google Scholar
  37. 37.
    Ciftci H, Hall RL, Saad N (2005) J Phys A: Math Gen 38:1147CrossRefGoogle Scholar
  38. 38.
    Ciftci H, Kisoglu HF (2016) Chin Phys B 25:030201CrossRefGoogle Scholar
  39. 39.
    Kisoglu HF, Ciftci H (2017) Commun Theor Phys 67:350CrossRefGoogle Scholar
  40. 40.
    Aygun M, Bayrak O, Bostosun I (2007) J Phys B: At Mol Opt 40:537CrossRefGoogle Scholar
  41. 41.
    Greiner W (2000) Relativistic Quantum Mechanics: Wave Equations. Springer, BerlinCrossRefGoogle Scholar
  42. 42.
    Alhaidari AD, Bahlouli H, Al-Hasan A (2006) Phys Lett A 349:87CrossRefGoogle Scholar
  43. 43.
    Pekeris CL (1934) Phys Rev 45:98CrossRefGoogle Scholar
  44. 44.
    Zhang GD, Liu JY, Zhang LH, Zhou W, Jia CS (2012) Phys Rev A 86:062510CrossRefGoogle Scholar
  45. 45.
    Shui ZW, Jia CS (2016) Eur Phys J Plus 131:215CrossRefGoogle Scholar
  46. 46.
    Frost AA, Musulin B (1954) J Am Chem Soc 76:2045CrossRefGoogle Scholar
  47. 47.
    Jia CS, Dai JW et al (2015) Chem Phys Lett 619:54CrossRefGoogle Scholar
  48. 48.
    Taş A, Havare A (2018) Few-Body Syst 59:52CrossRefGoogle Scholar
  49. 49.
    Taş A, Aydogdu O, Salti M (2017) Ann Phys 379:67CrossRefGoogle Scholar
  50. 50.
    Taş A, Aydogdu O, Salti M (2017) J Korean Phys Soc 70 :896CrossRefGoogle Scholar
  51. 51.
    Visscher L, Dyall KG (1996) J Chem Phys 104:9040CrossRefGoogle Scholar
  52. 52.
    Visscher L, Styszyoski J, Nieuwpoort WC (1996) J Chem Phys 105:1987CrossRefGoogle Scholar
  53. 53.
    de Jong WA, Styszyoski J, Visscher L, Nieuwpoort WC (1998) J Chem Phys 108:S177CrossRefGoogle Scholar
  54. 54.
    Lee HS, Cho WK, Choi YJ, Lee YS (2005) Chem Phys 311:121CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Basic Sciences, Faculty of MaritimeMersin UniversityMersinTurkey
  2. 2.Department of Physics, Faculty of Science and LettersMersin UniversityMersinTurkey

Personalised recommendations