Advertisement

Computational investigation of Au·H hydrogen bonds involving neutral AuI N-heterocyclic carbene complexes and amphiprotic binary hydrides

  • Ferdinand Groenewald
  • Helgard G. Raubenheimer
  • Jan Dillen
  • Catharine EsterhuysenEmail author
Original Paper
Part of the following topical collections:
  1. Tim Clark 70th Birthday Festschrift

Abstract

In this computational study, we investigate the ability of various neutral R-AuI-NHC (NHC = N-heterocyclic carbene) complexes [R = H, CH3, Cl, OH] to form hydrogen bonds with the amphiprotic binary hydrides NH3, H2O and HF. Optimized geometries of the adducts calculated at various levels of theory all exhibit Au⋯HX hydrogen bonds. In adducts of complexes containing NHC ligands with α(N)H units, (NH)carbene⋯XH interactions also exist, yielding hydrogen-bonded rings with graph-set notation \( {\mathrm{R}}_2^2(6) \) that correspond to pseudo chelates with κ2C,H coordination. AIM analysis at the MP2/aug-cc-pVTZ-pp level of theory indicates that the (NH)carbene⋯XH hydrogen bonds are generally stronger than the Au···HX interactions, except for those involving HF. The Au⋯HX interactions vary with the Lewis basicity of the Au(I) center as a result of the nature of the R ligand, while the (NH)carbene⋯XH hydrogen bonds are unaffected by R. Energy decomposition analysis at the BP86/TZP level of theory identifies the origin of this difference as the greater component of polarization involved in Au⋯HX interactions. Replacing the α(N)Hs with methyl groups prevents formation of a strong (NH)carbene⋯XH interaction, thus reducing the overall stabilization of the adducts. Nevertheless, the Au⋯H interactions remain largely unchanged and are strong enough to sustain the hydrogen-bonded complexes, although weak C–H⋯X interactions are often also present.

Keywords

Gold(I) complexes N-Heterocyclic carbenes Hydrogen bonds Polarization 

Notes

Acknowledgments

The Rhasatsha High Performance Computer Center at Stellenbosch University and the Centre for High Performance Computing in Cape Town are thanked for computational resources. The National Research Foundation (JD: CSUR grant no. 91553; CE: CPRR grant no. 113331) and the University of Stellenbosch are thanked for financial support. Opinions expressed and conclusions arrived at are those of the authors and are not necessarily to be attributed to the NRF.

Supplementary material

894_2019_4018_MOESM1_ESM.docx (5.7 mb)
ESM 1 (DOCX 5850 kb)

References

  1. 1.
    Kazarian SG, Hamley PA, Poliakoff M (1993) J Am Chem Soc 115:9069–9079CrossRefGoogle Scholar
  2. 2.
    Groenewald F, Dillen J, Raubenheimer HG, Esterhuysen C (2016) Angew Chem Int Ed 55:1694–1698CrossRefGoogle Scholar
  3. 3.
    Groenewald F, Dillen J, Raubenheimer HG, Esterhuysen C (2017) Dalton Trans 46:4960–4967CrossRefGoogle Scholar
  4. 4.
    Schmidbaur H, Raubenheimer HG, Dobrzañska L (2014) Chem Soc Rev 43:345–380CrossRefGoogle Scholar
  5. 5.
    Koskinen L, Jääskeläinen S, Kalenius E, Hirva P, Haukka M (2014) Cryst Growth Des 14:1989–1997CrossRefGoogle Scholar
  6. 6.
    Steiner T (2002) Angew Chem Int Ed 41:48–76CrossRefGoogle Scholar
  7. 7.
    Kryachko ES (2008) J Mol Struct 880:23–30CrossRefGoogle Scholar
  8. 8.
    Brammer L, Zhao D, Ladipo FT, Braddock-Wilking J (1995) Acta Crystallog B51:632–640CrossRefGoogle Scholar
  9. 9.
    Groom CR, Bruno IJ, Lightfoot MP, Ward SC (2016) Acta Crystallog B72:171–179Google Scholar
  10. 10.
    Collado A, Gomez-Suarez A, Martin AR, Slawin AMZ, Nolan SP (2013) Chem Commun 49:5541–5543CrossRefGoogle Scholar
  11. 11.
    Phillips N, Dodson T, Tirfoin R, Bates JI, Aldridge S (2014) Chem Eur J 20:16721–16731CrossRefGoogle Scholar
  12. 12.
    Nahra F, Patrick SR, Collado A, Nolan SP (2014) Polyhedron 84:59–62CrossRefGoogle Scholar
  13. 13.
    Kunz PC, Wetzel C, Kögel S, Kassack MU, Spingler B (2011) Dalton Trans 40:35–37CrossRefGoogle Scholar
  14. 14.
    Raubenheimer HG, Lindeque L, Cronje S (1996) J Organomet Chem 511:177–184CrossRefGoogle Scholar
  15. 15.
    Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, OxfordGoogle Scholar
  16. 16.
    Groenewald F, Esterhuysen C, Dillen J (2012) Theo Chem Acc 131:1–12CrossRefGoogle Scholar
  17. 17.
    Riley KE, Hobza P (2007) J Phys Chem A 111:8257–8263CrossRefGoogle Scholar
  18. 18.
    Boys SF, Bernardi F (1970) Mol Phys 19:553–566CrossRefGoogle Scholar
  19. 19.
    Simon S, Duran M, Dannenberg JJ (1996) J Chem Phys 105:11024–11031CrossRefGoogle Scholar
  20. 20.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels, AD, Farkas, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision B.01. Gaussian, Inc., Wallingford, CTGoogle Scholar
  21. 21.
    Becke AD (1998) J Chem Phys 1993 98:5648–5652Google Scholar
  22. 22.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  23. 23.
    Miehlich B, Savin A, Stoll H, Preuss H (1989) Chem Phys Lett 157:200–206CrossRefGoogle Scholar
  24. 24.
    Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Phys Rev Lett 91:146401CrossRefGoogle Scholar
  25. 25.
    Peterson KA, Puzzarini C (2005) Theo Chem Acc 114(4–5):283–296CrossRefGoogle Scholar
  26. 26.
    Figgen D, Rauhut G, Dolg M, Stoll H (2005) Chem Phys 311:227–244CrossRefGoogle Scholar
  27. 27.
    Kendall RA, Dunning TH, Harrison RJ (1992) J Chem Phys 96:6796–6806CrossRefGoogle Scholar
  28. 28.
    Dunning TH (1989) J Chem Phys 90:1007–1023CrossRefGoogle Scholar
  29. 29.
    Møller C, Plesset MS (1934) Phys Rev 46:618–622CrossRefGoogle Scholar
  30. 30.
    Binkley JS, Pople JA (1975) Int J Quant Chem 9:229–236CrossRefGoogle Scholar
  31. 31.
    Feller D (1996) J Comp Chem 17:1571–1586CrossRefGoogle Scholar
  32. 32.
    Schuchardt KL, Didier BT, Elsethagen T, Sun L, Gurumoorthi V, Chase J, Li J, Windus TL (2007) J Chem Inf Model 47:1045–1052CrossRefGoogle Scholar
  33. 33.
    Zhurko GA, Zhurko DA (2012) ChemCraft. Version 1.7 (Build 132) http://www.chemcraftprog.com
  34. 34.
    Bondi A (1964) J Phys Chem 68:441–451CrossRefGoogle Scholar
  35. 35.
    Keith TA (2012) AIMAll version 14.06.21. TK Gristmill SoftwareGoogle Scholar
  36. 36.
    Keith TA, Frisch MJ. J Phys Chem A115:12879–12894Google Scholar
  37. 37.
    Tiana D, Francisco E, Blanco MA, Martin Pendás A (2009) J Phys Chem A 113:7963–7971CrossRefGoogle Scholar
  38. 38.
    Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W (2010) J Am Chem Soc 132:6498–6506CrossRefGoogle Scholar
  39. 39.
    Bickelhaupt FM, Baerends EJ (2000) Rev Comput Chem 15:1–86Google Scholar
  40. 40.
    Morokuma K (1971) J Chem Phys 55:1236CrossRefGoogle Scholar
  41. 41.
    Ziegler T, Rauk A (1977) Theor Chim Acta 46:1–10CrossRefGoogle Scholar
  42. 42.
    Te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJA, Snijders JG, Ziegler T (2001) J Comput Chem 22:931–967CrossRefGoogle Scholar
  43. 43.
    Becke AD (1988) Phys Rev A 38:3098–3100CrossRefGoogle Scholar
  44. 44.
    Perdew JP (1986) Phys Rev B 33:8822–8824CrossRefGoogle Scholar
  45. 45.
    van Lenthe E, Baerends EJ, Snijders JG (1994) J Chem Phys 101:9783CrossRefGoogle Scholar
  46. 46.
    van Lenthe E, Ehlers A, Baerends EJ (1999) J Chem Phys 110:8943CrossRefGoogle Scholar
  47. 47.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104CrossRefGoogle Scholar
  48. 48.
    Etter MC, MacDonald JC, Bernstein J (1990) Acta Crystallog B 46:256–262CrossRefGoogle Scholar
  49. 49.
    Grabowski SJ (2004) J Phys Org Chem 17:18–31CrossRefGoogle Scholar
  50. 50.
    Berger RJF, Schoiber J, Monkowius U (2017) Inorg Chem 56:956–961CrossRefGoogle Scholar
  51. 51.
    Rigoulet M, Massou S, Sosa Carrizo ED, Mallet-Ladeira S, Amgoune A, Miqueu K, Bourissou D (2019) Proc Natl Acad Sci USA 116:46–51CrossRefGoogle Scholar
  52. 52.
    Cukrowski I, de Lange JH, Groenewald F, Raubenheimer HG (2017) ChemPhysChem 18:2288–2294CrossRefGoogle Scholar
  53. 53.
    Grabowski SJ (2001) J Phys Chem A105:10739–10746CrossRefGoogle Scholar
  54. 54.
    González L, Mó O, Yáñez M, Elguero J (1998) J Chem Phys 109:2685–2693CrossRefGoogle Scholar
  55. 55.
    Koch W, Frenking G, Gauss J, Cremer D, Collins JR (1987) J Am Chem Soc 109:5917–5934CrossRefGoogle Scholar
  56. 56.
    Rozas I, Alkorta I, Elguero J (2000) J Am Chem Soc 122:11154–11161CrossRefGoogle Scholar
  57. 57.
    Nakanishi W, Hayashi S, Narahara K (2008) J Phys Chem A112:13593–13599CrossRefGoogle Scholar
  58. 58.
    Singh UC, Kollman PA (1984) J Comp Chem 5:129–145CrossRefGoogle Scholar
  59. 59.
    Besler BH, Merz Jr KM, Kollman PA (1990) J Comp Chem 11:431–439CrossRefGoogle Scholar
  60. 60.
    Clark T (2017a) Faraday Discuss 203:9–27CrossRefGoogle Scholar
  61. 61.
    Clark T (2017b) J Mol Model 23:297CrossRefGoogle Scholar
  62. 62.
    Clark T, Murray JS, Politzer P (2018) Phys Chem Chem Phys 20:30076–30082CrossRefGoogle Scholar
  63. 63.
    Hernández NC, Graciani J, Márquez A, Sanz JF (2005) Surf Sci 575:189–196CrossRefGoogle Scholar
  64. 64.
    Desiraju GR, Steiner T (1999) The weak hydrogen bond in structural chemistry and biology. IUCr Monographs on Crystallography, vol 9. Oxford University Press, New YorkGoogle Scholar
  65. 65.
    Groenewald F, Dillen J, Esterhuysen C (2018) New J Chem 42:10529–10538CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry and Polymer ScienceStellenbosch UniversityStellenboschSouth Africa

Personalised recommendations