Molecular dynamics investigation of halogenated amyloidogenic peptides

  • Alfonso GautieriEmail author
  • Alberto Milani
  • Andrea Pizzi
  • Federica Rigoldi
  • Alberto Redaelli
  • Pierangelo MetrangoloEmail author
Original Paper
Part of the following topical collections:
  1. Tim Clark 70th Birthday Festschrift


Besides their biomolecular relevance, amyloids, generated by the self-assembly of peptides and proteins, are highly organized structures useful for nanotechnology applications. The introduction of halogen atoms in these peptides, and thus the possible formation of halogen bonds, allows further possibilities to finely tune the amyloid nanostructure. In this work, we performed molecular dynamics simulations on different halogenated derivatives of the β-amyloid peptide core-sequence KLVFF, by using a modified AMBER force field in which the σ-hole located on the halogen atom is modeled with a positively charged extra particle. The analysis of equilibrated structures shows good agreement with crystallographic data and experimental results, in particular concerning the formation of halogen bonds and the stability of the supramolecular structures. The modified force field described here allows describing the atomistic details contributing to peptides aggregation, with particular focus on the role of halogen bonds. This framework can potentially help the design of novel halogenated peptides with desired aggregation propensity.

Graphical abstract

Molecular dynamics investigation of halogenated amyloidogenic peptides


Amyloid Peptide Self-assembly Halogen bond Molecular dynamics 



The authors wish to thank Fondazione Cariplo (grant no. 2016-0481) and the H2020 EU Project AMMODIT (grant no. 645672) for funding. P.M. wishes to acknowledge the ERC for funding the project FOLDHALO (grant no. 307108) and MINIRES (grant no. 789815).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

894_2019_4012_MOESM1_ESM.docx (3.4 mb)
ESM 1 (DOCX 3492 kb)


  1. 1.
    Hauser CAE, Maurer-Stroh S, Martins IC (2014) Amyloid-based nanosensors and nanodevices. Chem Soc Rev 43:5326–5345. CrossRefPubMedGoogle Scholar
  2. 2.
    Branco MC, Schneider JP (2009) Self-assembling materials for therapeutic delivery. Acta Biomater 5:817–831. CrossRefPubMedGoogle Scholar
  3. 3.
    Bortolini C, Jones NC, Hoffmann SV et al (2015) Mechanical properties of amyloid-like fibrils defined by secondary structures. Nanoscale 7:7745–7752. CrossRefPubMedGoogle Scholar
  4. 4.
    vanden Akker CC, Deckert-Gaudig T, Schleeger M et al (2015) Nanoscale heterogeneity of the molecular structure of individual hIAPP amyloid fibrils revealed with tip-enhanced Raman spectroscopy. Small 11:4131–4139. CrossRefGoogle Scholar
  5. 5.
    Caplan MR, Schwartzfarb EM, Zhang S et al (2002) Control of self-assembling oligopeptide matrix formation through systematic variation of amino acid sequence. Biomaterials 23:219–227. CrossRefPubMedGoogle Scholar
  6. 6.
    Cui H, Cheetham AG, Pashuck ET, Stupp SI (2014) Amino acid sequence in constitutionally isomeric tetrapeptide amphiphiles dictates architecture of one-dimensional nanostructures. J Am Chem Soc 136:12461–12468. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Bertolani A, Pirrie L, Stefan L et al (2015) Supramolecular amplification of amyloid self-assembly by iodination. Nat Commun 6:7574. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Pizzi A, Pigliacelli C, Gori A et al (2017) Halogenation dictates the architecture of amyloid peptide nanostructures. Nanoscale 9:9805–9810. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ma B, Nussinov R (2002) Stabilities and conformations of Alzheimer’s β-amyloid peptide oligomers (Aβ16–22, Aβ16–35, and Aβ10–35): sequence effects. Proc Natl Acad Sci USA 99:14126–14131. CrossRefPubMedGoogle Scholar
  10. 10.
    Nguyen HD, Hall CK (2004) Molecular dynamics simulations of spontaneous fibril formation by random-coil peptides. Proc Natl Acad Sci USA 101:16180–16185. CrossRefPubMedGoogle Scholar
  11. 11.
    Urbanc B, Cruz L, Yun S et al (2004) In silico study of amyloid beta-protein folding and oligomerization. Proc Natl Acad Sci USA 101:17345–17350. CrossRefPubMedGoogle Scholar
  12. 12.
    Rigoldi F, Metrangolo P, Redaelli A, Gautieri A (2017) Nanostructure and stability of calcitonin amyloids. J Biol Chem 292:jbc.M116.770271. CrossRefGoogle Scholar
  13. 13.
    Colombo G, Morra G, Pizzi A et al (2016) Crystal structure of the DFNKF segment of human calcitonin unveils aromatic interactions between Phenylalanines. Chem - A Eur J 23:2051–2058. CrossRefGoogle Scholar
  14. 14.
    Pizzi A, Demitri N, Terraneo G, Metrangolo P (2018) Halogen bonding at the wet interfaces of an amyloid peptide structure. Cryst Eng Comm 20:5321–5326. CrossRefGoogle Scholar
  15. 15.
    Lu Y, Shi T, Wang Y et al (2009) Halogen bonding-a novel interaction for rational drug design? J Med Chem 52:2854–2862. CrossRefPubMedGoogle Scholar
  16. 16.
    Ibrahim M (2011) Molecular mechanical study of halogen bonding in drug discovery. J Comput Chem 31:2967–2970. CrossRefGoogle Scholar
  17. 17.
    Ibrahim M (2012) AMBER empirical potential describes the geometry and energy of noncovalent halogen interactions better than advanced semiempirical quantum mechanical method PM6-DH2X. J Phys Chem B 116:3659–3669. CrossRefPubMedGoogle Scholar
  18. 18.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenber DJ (2009) Gaussian 09 a.02. Gaussian, Inc, WallingfordGoogle Scholar
  19. 19.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648. CrossRefGoogle Scholar
  20. 20.
    Peterson KA, Shepler BC, Figgen D, Stoll H (2006) On the spectroscopic and thermochemical properties of ClO, BrO, IO, and their anions. J Phys Chem A 110:13877–13883. CrossRefPubMedGoogle Scholar
  21. 21.
    Case DA, Cheatham TE, Darden T et al (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688CrossRefGoogle Scholar
  22. 22.
    Bayly CI, Cieplak P, Cornell WD, Kollman PA (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem 97:10269–10280. CrossRefGoogle Scholar
  23. 23.
    Macrae CF, Edgington PR, McCabe P et al (2006) Mercury: visualization and analysis of crystal structures. J Appl Crystallogr 39:453–457. CrossRefGoogle Scholar
  24. 24.
    Pizzi A, Dichiarante V, Terraneo G, Metrangolo P (2017) Crystallographic insights into the self-assembly of KLVFF amyloid-beta peptides. Biopolymers. CrossRefGoogle Scholar
  25. 25.
    Sawaya MR, Sambashivan S, Nelson R et al (2007) Atomic structures of amyloid cross-β spines reveal varied steric zippers. Nature 447:453–457. CrossRefGoogle Scholar
  26. 26.
    Gautieri A, Ionita M, Silvestri D et al (2010) Computer-aided molecular modeling and experimental validation of water permeability properties biosynthetic materials. J Comput Theor Nanosci 7:1–7. CrossRefGoogle Scholar
  27. 27.
    Gautieri A, Vesentini S, Redaelli A, Buehler MJ (2012) Osteogenesis imperfecta mutations lead to local tropocollagen unfolding and disruption of H-bond network. RSC Adv 2:3890. CrossRefGoogle Scholar
  28. 28.
    Rigoldi F, Donini S, Giacomina F et al (2018) Thermal stabilization of the deglycating enzyme Amadoriase I by rational design. Sci Rep 8:3042.
  29. 29.
    Rigoldi F, Spero L, Dalle Vedove A et al (2016) Molecular dynamics simulations provide insights into the substrate specificity of FAOX family members. Mol BioSyst 12:2622–2633. CrossRefPubMedGoogle Scholar
  30. 30.
    Rigoldi F, Donini S, Redaelli A et al (2018) Engineering of thermostable enzymes for industrial applications review : engineering of thermostable enzymes for industrial applications. APL Bioeng 2:011501. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Nelson MT, Humphrey W, Gursoy A et al (1996) NAMD: a parallel, object oriented molecular dynamics program. Int J Supercomput Appl High Perform Comput 10:251–268. CrossRefGoogle Scholar
  32. 32.
    Harvey MJ, Giupponi G, De Fabritiis G (2009) ACEMD: accelerating biomolecular dynamics in the microsecond time scale. J Chem Theory Comput 5:1632–1639. CrossRefPubMedGoogle Scholar
  33. 33.
    Feenstra KA, Hess B, Berendsen HJC (1999) Improving efficiency of large time-scale molecular dynamics simulations of hydrogen-rich systems. J Comput Chem 20:786–798.<786::AID-JCC5>3.0.CO;2-B CrossRefGoogle Scholar
  34. 34.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38. CrossRefGoogle Scholar
  35. 35.
    Frederix PWJM, Scott GG, Abul-Haija YM et al (2015) Exploring the sequence space for (tri-)peptide self-assembly to design and discover new hydrogels. Nat Chem 7:30–37. CrossRefPubMedGoogle Scholar
  36. 36.
    Frederix PWJM, Ulijn RV, Hunt NT, Tuttle T (2011) Virtual screening for dipeptide aggregation: toward predictive tools for peptide self-assembly. J Phys Chem Lett 2:2380–2384. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Colletier J-P, Laganowsky A, Landau M et al (2011) Molecular basis for amyloid- polymorphism. Proc Natl Acad Sci USA 108:16938–16943. CrossRefPubMedGoogle Scholar
  38. 38.
    Kumaraswamy P, Sethuraman S, Krishnan UM (2013) Hierarchical self-assembly of Tjernberg peptide at nanoscale. Soft Matter 9:2684–2694. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Biomolecular Engineering Laboratory, Dipartimento di Elettronica, Informazione e BioingegneriaPolitecnico di MilanoMilanItaly
  2. 2.Dipartimento di EnergiaPolitecnico di MilanoMilanItaly
  3. 3.Dipartimento di Chimica, Materiali ed Ingegneria Chimica “Giulio Natta”Politecnico di MilanoMilanItaly

Personalised recommendations