Advertisement

What is semiempirical molecular orbital theory approximating?

  • Johannes T. MargrafEmail author
  • Pavlo O. Dral
Original Paper
  • 41 Downloads
Part of the following topical collections:
  1. Tim Clark 70th Birthday Festschrift

Abstract

We elucidate the approaches used to incorporate electron correlation in existing semiempirical molecular orbital theory (SEMO) methods and compare them with the techniques used in other quantum chemical methods. After analyzing expressions for electron correlation in ab initio wavefunction theory, density functional theory, and density functional-based tight-binding (TB) methods, we suggest a framework for developing hybrid TB-SEMO methods. We provide a numerical proof-of-concept for such a method based on the OM2 method.

Keywords

Semiempirical molecular orbital theory NDDO Correlated orbital theory Electron correlation OM2 MNDO 

Notes

Acknowledgements

JTM thanks the Alexander-von-Humboldt Foundation and the Technical University of Munich for financial support. PD thanks the European Research Council for financial support through an ERC Advanced Grant (OMSQC). He also thanks Xin Wu for providing his parametrization program. We would like to dedicate this paper to Tim Clark who has been a mentor to both of us during our doctoral studies and ever since.

References

  1. 1.
    Pople JA, Segal GA (1965) Approximate self-consistent molecular orbital theory. II. Calculations with complete neglect of differential overlap. J Chem Phys 43:S136–S151.  https://doi.org/10.1063/1.1701476 CrossRefGoogle Scholar
  2. 2.
    Pople JA, Santry DP, Segal GA (1965) Approximate self-consistent molecular orbital theory. I. Invariant procedures. J Chem Phys 43:S129–S135.  https://doi.org/10.1063/1.1701475 CrossRefGoogle Scholar
  3. 3.
    Pople JA (1953) Electron interaction in unsaturated hydrocarbons. Trans Faraday Soc 49:1375.  https://doi.org/10.1039/tf9534901375 CrossRefGoogle Scholar
  4. 4.
    Kolb M, Thiel W (1993) Beyond the MNDO model: methodical considerations and numerical results. J Comput Chem 14:775–789.  https://doi.org/10.1002/jcc.540140704 CrossRefGoogle Scholar
  5. 5.
    Chandler GS, Grader FE (1980) A re-examination of the justification of neglect of differential overlap approximations in terms of a power series expansion in S. Theor Chim Acta 54:131–144.  https://doi.org/10.1007/BF00554120 CrossRefGoogle Scholar
  6. 6.
    Wu X, Dral PO, Koslowski A, Thiel W (2019) Big data analysis of ab initio molecular integrals in the neglect of diatomic differential overlap approximation. J Comput Chem 40:638–649.  https://doi.org/10.1002/jcc.25748 CrossRefPubMedGoogle Scholar
  7. 7.
    Dral PO, Wu X, Spörkel L et al (2016) Semiempirical quantum-chemical orthogonalization-corrected methods: theory, implementation, and parameters. J Chem Theory Comput 12:1082–1096.  https://doi.org/10.1021/acs.jctc.5b01046 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Dral PO, Clark T (2011) Semiempirical UNO-CAS and UNO-CI: method and applications in nanoelectronics. J Phys Chem A 115:11303–11312.  https://doi.org/10.1021/jp204939x CrossRefPubMedGoogle Scholar
  9. 9.
    Thiel W (2014) Semiempirical quantum-chemical methods. Wiley Interdiscip Rev Comput Mol Sci 4:145–157.  https://doi.org/10.1002/wcms.1161 CrossRefGoogle Scholar
  10. 10.
    Margraf JT, Hennemann M, Meyer B, Clark T (2015) EMPIRE: a highly parallel semiempirical molecular orbital program: 2: periodic boundary conditions. J Mol Model 21:144.  https://doi.org/10.1007/s00894-015-2692-3 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hennemann M, Clark T (2014) EMPIRE: a highly parallel semiempirical molecular orbital program: 1: self-consistent field calculations. J Mol Model 20:2331.  https://doi.org/10.1007/s00894-014-2331-4 CrossRefPubMedGoogle Scholar
  12. 12.
    Ryan H, Carter M, Stenmark P et al (2016) A comparison of X-ray and calculated structures of the enzyme MTH1. J Mol Model 22:168.  https://doi.org/10.1007/s00894-016-3025-x CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Stewart JJP (2013) Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. J Mol Model 19:1–32.  https://doi.org/10.1007/s00894-012-1667-x CrossRefPubMedGoogle Scholar
  14. 14.
    Dewar MJS, Thiel W (1977) Ground states of molecules. 39. MNDO results for molecules containing hydrogen, carbon, nitrogen, and oxygen. J Am Chem Soc 99:4907–4917.  https://doi.org/10.1021/ja00457a005 CrossRefGoogle Scholar
  15. 15.
    Dewar MJS (1983) Development and status of MINDO/3 and MNDO. J Mol Struct 100:41–50.  https://doi.org/10.1016/0022-2860(83)90082-0 CrossRefGoogle Scholar
  16. 16.
    Bingham RC, Dewar MJS, Lo DH (1975) Ground states of molecules. XXV. MINDO/3. Improved version of the MINDO semiempirical SCF-MO method. J Am Chem Soc 97:1285–1293.  https://doi.org/10.1021/ja00839a001 CrossRefGoogle Scholar
  17. 17.
    Dewar MJS, Lo DH (1972) Ground states of σ-bonded molecules. XVII. Fluorine compounds. J Am Chem Soc 94:5296–5303.  https://doi.org/10.1021/ja00770a026 CrossRefGoogle Scholar
  18. 18.
    Ridley J, Zerner M (1973) An intermediate neglect of differential overlap technique for spectroscopy: pyrrole and the azines. Theor Chim Acta 32:111–134.  https://doi.org/10.1007/BF00528484 CrossRefGoogle Scholar
  19. 19.
    Dewar MJS, Healy EF, Holder AJ, Yuan Y-C (1990) Comments on a comparison of AM1 with the recently developed PM3 method. J Comput Chem 11:541–542.  https://doi.org/10.1002/jcc.540110413 CrossRefGoogle Scholar
  20. 20.
    Stewart JJP (1990) Reply to “comments on a comparison of AM1 with the recently developed PM3 method”. J Comput Chem 11:543–544.  https://doi.org/10.1002/jcc.540110414 CrossRefGoogle Scholar
  21. 21.
    Clark T, Stewart JJP (2011) MNDO-like semiempirical molecular orbital theory and its application to large systems. Computational methods for large systems. Wiley, Hoboken, pp 259–286CrossRefGoogle Scholar
  22. 22.
    Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J Am Chem Soc 107:3902–3909.  https://doi.org/10.1021/ja00299a024 CrossRefGoogle Scholar
  23. 23.
    Stewart JJP (2004) Optimization of parameters for semiempirical methods IV: extension of MNDO, AM1 and PM3 to more main group elements. J Mol Model 10:155–164.  https://doi.org/10.1007/s00894-004-0183-z CrossRefPubMedGoogle Scholar
  24. 24.
    Winget P, Selçuki C, Horn AHC et al (2003) Towards a “next generation” neglect of diatomic differential overlap based semiempirical molecular orbital technique. Theor Chem Accounts 110:254–266.  https://doi.org/10.1007/s00214-003-0454-2 CrossRefGoogle Scholar
  25. 25.
    Řezáč J, Hobza P (2012) Advanced corrections of hydrogen bonding and dispersion for semiempirical quantum mechanical methods. J Chem Theory Comput 8:141–151.  https://doi.org/10.1021/ct200751e CrossRefPubMedGoogle Scholar
  26. 26.
    Řezáč J, Hobza P (2011) A halogen-bonding correction for the semiempirical PM6 method. Chem Phys Lett 506:286–289.  https://doi.org/10.1016/j.cplett.2011.03.009 CrossRefGoogle Scholar
  27. 27.
    Dral PO, Wu X, Spörkel L et al (2016) Semiempirical quantum-chemical orthogonalization-corrected methods: benchmarks for ground-state properties. J Chem Theory Comput 12:1097–1120.  https://doi.org/10.1021/acs.jctc.5b01047 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Korth M, Thiel W (2011) Benchmarking semiempirical methods for thermochemistry, kinetics, and noncovalent interactions: OMx methods are almost as accurate and robust as DFT-GGA methods for organic molecules. J Chem Theory Comput 7:2929–2936.  https://doi.org/10.1021/ct200434a CrossRefPubMedGoogle Scholar
  29. 29.
    Thiel W (1981) The MNDOC method, a correlated version of the MNDO model. J Am Chem Soc 103:1413–1420.  https://doi.org/10.1021/ja00396a021 CrossRefGoogle Scholar
  30. 30.
    Löwdin P-O (1955) Quantum theory of many-particle systems. II. Study of the ordinary Hartree–Fock approximation. Phys Rev 97:1490–1508.  https://doi.org/10.1103/PhysRev.97.1490 CrossRefGoogle Scholar
  31. 31.
    Slater JC (1951) A simplification of the Hartree–Fock method. Phys Rev 81:385–390.  https://doi.org/10.1103/PhysRev.81.385 CrossRefGoogle Scholar
  32. 32.
    Löwdin P-O (1950) On the non-orthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals. J Chem Phys 18:365–375.  https://doi.org/10.1063/1.1747632 CrossRefGoogle Scholar
  33. 33.
    Sattelmeyer KW, Tubert-Brohman I, Jorgensen WL (2006) NO-MNDO: reintroduction of the overlap matrix into MNDO. J Chem Theory Comput 2:413–419.  https://doi.org/10.1021/ct050174c CrossRefPubMedGoogle Scholar
  34. 34.
    Bak KL, Gauss J, Helgaker T et al (2000) The accuracy of molecular dipole moments in standard electronic structure calculations. Chem Phys Lett 319:563–568.  https://doi.org/10.1016/S0009-2614(00)00198-6 CrossRefGoogle Scholar
  35. 35.
    Hesselmann A, Jansen G (1999) Molecular properties from coupled-cluster Brueckner orbitals. Chem Phys Lett 315:248–256.  https://doi.org/10.1016/S0009-2614(99)01251-8 CrossRefGoogle Scholar
  36. 36.
    Bartlett RJ (2009) Towards an exact correlated orbital theory for electrons. Chem Phys Lett 484:1–9.  https://doi.org/10.1016/j.cplett.2009.10.053 CrossRefGoogle Scholar
  37. 37.
    Beste A, Bartlett RJ (2004) Independent particle theory with electron correlation. J Chem Phys 120:8395–8404.  https://doi.org/10.1063/1.1691402 CrossRefPubMedGoogle Scholar
  38. 38.
    Ortiz JV (2004) Brueckner orbitals, Dyson orbitals, and correlation potentials. Int J Quantum Chem 100:1131–1135.  https://doi.org/10.1002/qua.20204 CrossRefGoogle Scholar
  39. 39.
    Pople JA, Gill PMW, Johnson BG (1992) Kohn-Sham density-functional theory within a finite basis set. Chem Phys Lett 199:557–560.  https://doi.org/10.1016/0009-2614(92)85009-Y CrossRefGoogle Scholar
  40. 40.
    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138.  https://doi.org/10.1103/PhysRev.140.A1133 CrossRefGoogle Scholar
  41. 41.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652.  https://doi.org/10.1063/1.464913 CrossRefGoogle Scholar
  42. 42.
    Perdew JP, Ernzerhof M, Burke K (1996) Rationale for mixing exact exchange with density functional approximations. J Chem Phys 105:9982–9985.  https://doi.org/10.1063/1.472933 CrossRefGoogle Scholar
  43. 43.
    Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871.  https://doi.org/10.1103/PhysRev.136.B864 CrossRefGoogle Scholar
  44. 44.
    Katriel J, Davidson ER (1980) Asymptotic behavior of atomic and molecular wave functions. Proc Natl Acad Sci 77:4403–4406.  https://doi.org/10.1002/jpln.200900154 CrossRefPubMedGoogle Scholar
  45. 45.
    Verma P, Bartlett RJ (2012) Increasing the applicability of density functional theory. III. Do consistent Kohn–Sham density functional methods exist? J Chem Phys 137:134102.  https://doi.org/10.1063/1.4755818 CrossRefPubMedGoogle Scholar
  46. 46.
    Bartlett RJ, Ranasinghe DS (2017) The power of exact conditions in electronic structure theory. Chem Phys Lett 669:54–70.  https://doi.org/10.1016/j.cplett.2016.12.017 CrossRefGoogle Scholar
  47. 47.
    Chong DP, Gritsenko OV, Baerends EJ (2002) Interpretation of the Kohn–Sham orbital energies as approximate vertical ionization potentials. J Chem Phys 116:1760–1772.  https://doi.org/10.1063/1.1430255 CrossRefGoogle Scholar
  48. 48.
    Staroverov VN, Scuseria GE, Davidson ER (2006) Optimized effective potentials yielding Hartree–Fock energies and densities. J Chem Phys 124:141103.  https://doi.org/10.1063/1.2194546 CrossRefPubMedGoogle Scholar
  49. 49.
    Bartlett RJ, Lotrich VF, Schweigert IV (2005) Ab initio density functional theory: the best of both worlds? J Chem Phys 123:62205.  https://doi.org/10.1063/1.1904585 CrossRefPubMedGoogle Scholar
  50. 50.
    Bartlett RJ, Grabowski I, Hirata S, Ivanov S (2005) The exchange-correlation potential in ab initio density functional theory. J Chem Phys 122:34104.  https://doi.org/10.1063/1.1809605 CrossRefPubMedGoogle Scholar
  51. 51.
    Ryabinkin IG, Ospadov E, Staroverov VN (2017) Exact exchange-correlation potentials of singlet two-electron systems. J Chem Phys 147:164117.  https://doi.org/10.1063/1.5003825 CrossRefPubMedGoogle Scholar
  52. 52.
    Gould T, Toulouse J (2014) Kohn–Sham potentials in exact density-functional theory at noninteger electron numbers. Phys Rev A 90:50502.  https://doi.org/10.1103/PhysRevA.90.050502 CrossRefGoogle Scholar
  53. 53.
    Medvedev MG, Bushmarinov IS, Sun J et al (2017) Density functional theory is straying from the path toward the exact functional. Science 355:49–52.  https://doi.org/10.1126/science.aah5975 CrossRefPubMedGoogle Scholar
  54. 54.
    Kohn W, Becke AD, Parr RG (1996) Density functional theory of electronic structure. J Phys Chem 100:12974–12980.  https://doi.org/10.1021/jp960669l CrossRefGoogle Scholar
  55. 55.
    Kim M-C, Sim E, Burke K (2013) Understanding and reducing errors in density functional calculations. Phys Rev Lett 111:73003.  https://doi.org/10.1103/PhysRevLett.111.073003 CrossRefGoogle Scholar
  56. 56.
    Kim MC, Park H, Son S et al (2015) Improved DFT potential energy surfaces via improved densities. J Phys Chem Lett 6:3802–3807.  https://doi.org/10.1021/acs.jpclett.5b01724 CrossRefPubMedGoogle Scholar
  57. 57.
    Verma P, Perera A, Bartlett RJ (2012) Increasing the applicability of DFT I: non-variational correlation corrections from Hartree–Fock DFT for predicting transition states. Chem Phys Lett 524:10–15.  https://doi.org/10.1016/j.cplett.2011.12.017 CrossRefGoogle Scholar
  58. 58.
    Oliphant N, Bartlett RJ (1994) A systematic comparison of molecular properties obtained using Hartree–Fock, a hybrid Hartree–Fock density-functional-theory, and coupled-cluster methods. J Chem Phys 100:6550–6561.  https://doi.org/10.1063/1.467064 CrossRefGoogle Scholar
  59. 59.
    Lochan RC, Head-Gordon M (2007) Orbital-optimized opposite-spin scaled second-order correlation: an economical method to improve the description of open-shell molecules. J Chem Phys 126:164101.  https://doi.org/10.1063/1.2718952 CrossRefPubMedGoogle Scholar
  60. 60.
    Reinhardt WP, Doll JD (1969) Direct calculation of natural orbitals by many-body perturbation theory: application to helium. J Chem Phys 50:2767.  https://doi.org/10.1063/1.1671446 CrossRefGoogle Scholar
  61. 61.
    Bozkaya U, Sherrill CD (2013) Orbital-optimized coupled-electron pair theory and its analytic gradients: accurate equilibrium geometries, harmonic vibrational frequencies, and hydrogen transfer reactions. J Chem Phys 139:54104.  https://doi.org/10.1063/1.4816628 CrossRefGoogle Scholar
  62. 62.
    Kossmann S, Neese F (2010) Correlated ab initio spin densities for larger molecules: orbital-optimized spin-component-scaled MP2 method. J Phys Chem A 114:11768–11781.  https://doi.org/10.1021/jp105647c CrossRefPubMedGoogle Scholar
  63. 63.
    Löwdin P-O (1955) Quantum theory of many-particle systems. I. Physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction. Phys Rev 97:1474–1489.  https://doi.org/10.1103/PhysRev.97.1474 CrossRefGoogle Scholar
  64. 64.
    Chiles RA, Dykstra CE (1981) An electron pair operator approach to coupled cluster wave functions. Application to He2, Be2, and Mg2 and comparison with CEPA methods. J Chem Phys 74:4544–4556.  https://doi.org/10.1063/1.441643 CrossRefGoogle Scholar
  65. 65.
    Ortiz JV (2013) Electron propagator theory: an approach to prediction and interpretation in quantum chemistry. Wiley Interdiscip Rev Comput Mol Sci 3:123–142.  https://doi.org/10.1002/wcms.1116 CrossRefGoogle Scholar
  66. 66.
    Cioslowski J, Piskorz P, Liu G (1997) Ionization potentials and electron affinities from the extended Koopmans’ theorem applied to energy-derivative density matrices: the EKTMPn and EKTQCISD methods. J Chem Phys 107:6804–6811.  https://doi.org/10.1063/1.474921 CrossRefGoogle Scholar
  67. 67.
    von Niessen W, Domcke W, Cederbaum LS, Kraemer WP (1977) Ionization potentials and vibrational structure in photoelectron spectra by a Green’s function method: trans-HNNH, cis-HNNH, and 1,1-dihydrodiazine (H2NN). J Chem Phys 67:44–51.  https://doi.org/10.1063/1.434539 CrossRefGoogle Scholar
  68. 68.
    Van Setten MJ, Caruso F, Sharifzadeh S et al (2015) GW100: benchmarking G0W0 for molecular systems. J Chem Theory Comput 11:5665–5687.  https://doi.org/10.1021/acs.jctc.5b00453 CrossRefPubMedGoogle Scholar
  69. 69.
    Hirata S, Hermes MR, Simons J, Ortiz JV (2015) General-order many-body greens function method. J Chem Theory Comput 11:1595–1606.  https://doi.org/10.1021/acs.jctc.5b00005 CrossRefPubMedGoogle Scholar
  70. 70.
    Hirata S, Doran AE, Knowles PJ, Ortiz JV (2017) One-particle many-body Green’s function theory: algebraic recursive definitions, linked-diagram theorem, irreducible-diagram theorem, and general-order algorithms. J Chem Phys 147:44108.  https://doi.org/10.1063/1.4994837 CrossRefGoogle Scholar
  71. 71.
    Thomas HB, Hennemann M, Kibies P et al (2017) The hpCADD NDDO Hamiltonian: parametrization. J Chem Inf Model 57:1907–1922.  https://doi.org/10.1021/acs.jcim.7b00080 CrossRefPubMedGoogle Scholar
  72. 72.
    Margraf JT, Claudino D, Bartlett RJ (2017) Determination of consistent semiempirical one-centre integrals based on coupled-cluster theory. Mol Phys 115:538–544.  https://doi.org/10.1080/00268976.2016.1200755 CrossRefGoogle Scholar
  73. 73.
    Oleari L, Di Sipio L, De Michelis G (1966) The evaluation of the one-centre integrals in the semi-empirical molecular orbital theory. Mol Phys 10:97–109.  https://doi.org/10.1080/00268976600100161 CrossRefGoogle Scholar
  74. 74.
    Foulkes WMC, Haydock R (1989) Tight-binding models and density-functional theory. Phys Rev B 39:12520–12536.  https://doi.org/10.1103/PhysRevB.39.12520 CrossRefGoogle Scholar
  75. 75.
    Gadaczek I, Hintze KJ, Bredow T (2012) Periodic calculations of excited state properties for solids using a semiempirical approach. Phys Chem Chem Phys 14:741–750.  https://doi.org/10.1039/c1cp22871d CrossRefPubMedGoogle Scholar
  76. 76.
    Nelson T, Fernandez-Alberti S, Roitberg AE, Tretiak S (2014) Nonadiabatic excited-state molecular dynamics: modeling photophysics in organic conjugated materials. Acc Chem Res 47:1155–1164.  https://doi.org/10.1021/ar400263p CrossRefPubMedGoogle Scholar
  77. 77.
    Cremer D, Thiel W (1987) On the importance of size-consistency corrections in semiempirical MNDOC calculations. J Comput Chem 8:48–50.  https://doi.org/10.1002/jcc.540080106 CrossRefGoogle Scholar
  78. 78.
    Tuna D, Lu Y, Koslowski A, Thiel W (2016) Semiempirical quantum-chemical orthogonalization-corrected methods: benchmarks of electronically excited states. J Chem Theory Comput 12:4400–4422.  https://doi.org/10.1021/acs.jctc.6b00403 CrossRefPubMedGoogle Scholar
  79. 79.
    Fabiano E, Keal TW, Thiel W (2008) Implementation of surface hopping molecular dynamics using semiempirical methods. Chem Phys 349:334–347.  https://doi.org/10.1016/j.chemphys.2008.01.044 CrossRefGoogle Scholar
  80. 80.
    Kong L, Bischoff FA, Valeev EF (2012) Explicitly correlated R12/F12 methods for electronic structure. Chem Rev 112:75–107.  https://doi.org/10.1021/cr200204r CrossRefPubMedGoogle Scholar
  81. 81.
    Harris J (1985) Simplified method for calculating the energy of weakly interacting fragments. Phys Rev B 31:1770–1779.  https://doi.org/10.1103/PhysRevB.31.1770 CrossRefGoogle Scholar
  82. 82.
    Urban A, Reese M, Mrovec M et al (2011) Parameterization of tight-binding models from density functional theory calculations. Phys Rev B 84:155119.  https://doi.org/10.1103/PhysRevB.84.155119 CrossRefGoogle Scholar
  83. 83.
    Margine ER, Kolmogorov AN, Reese M et al (2011) Development of orthogonal tight-binding models for Ti-C and Ti-N systems. Phys Rev B 84:155120.  https://doi.org/10.1103/PhysRevB.84.155120 CrossRefGoogle Scholar
  84. 84.
    Gaus M, Goez A, Elstner M (2013) Parametrization and benchmark of DFTB3 for organic molecules. J Chem Theory Comput 9:338–354.  https://doi.org/10.1021/ct300849w CrossRefPubMedGoogle Scholar
  85. 85.
    Elstner M, Porezag D, Jungnickel G et al (1998) Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys Rev B 58:7260–7268.  https://doi.org/10.1103/PhysRevB.58.7260 CrossRefGoogle Scholar
  86. 86.
    Seifert G (2007) Tight-binding density functional theory: an approximate Kohn-Sham DFT scheme. J Phys Chem A 111:5609–5613.  https://doi.org/10.1021/jp069056r CrossRefPubMedGoogle Scholar
  87. 87.
    Yilmazer ND, Korth M (2015) Enhanced semiempirical QM methods for biomolecular interactions. Comput Struct Biotechnol J 13:169–175.  https://doi.org/10.1016/j.csbj.2015.02.004 CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Kruse H, Grimme S (2012) A geometrical correction for the inter- and intra-molecular basis set superposition error in Hartree–Fock and density functional theory calculations for large systems. J Chem Phys 136.  https://doi.org/10.1063/1.3700154 CrossRefPubMedGoogle Scholar
  89. 89.
    Sure R, Grimme S (2013) Corrected small basis set Hartree–Fock method for large systems. J Comput Chem 34:1672–1685.  https://doi.org/10.1002/jcc.23317 CrossRefPubMedGoogle Scholar
  90. 90.
    Kriebel M, Weber K, Clark T (2018) A Feynman dispersion correction: a proof of principle for MNDO. J Mol Model 24:338.  https://doi.org/10.1007/s00894-018-3874-6 CrossRefPubMedGoogle Scholar
  91. 91.
    Welborn M, Cheng L, Miller TF (2018) Transferability in machine learning for electronic structure via the molecular orbital basis. J Chem Theory Comput 14:4772–4779.  https://doi.org/10.1021/acs.jctc.8b00636 CrossRefPubMedGoogle Scholar
  92. 92.
    Margraf JT, Reuter K (2018) Making the coupled cluster correlation energy machine-learnable. J Phys Chem A 122:6343–6348.  https://doi.org/10.1021/acs.jpca.8b04455 CrossRefPubMedGoogle Scholar
  93. 93.
    Ayala PY, Scuseria GE (2000) Atom pair partitioning of the correlation energy. Chem Phys Lett 322:213–218.  https://doi.org/10.1016/S0009-2614(00)00417-6 CrossRefGoogle Scholar
  94. 94.
    Ramakrishnan R, Dral PO, Rupp M, von Lilienfeld OA (2015) Big data meets quantum chemistry approximations: the Δ-machine learning approach. J Chem Theory Comput 11:2087–2096.  https://doi.org/10.1021/acs.jctc.5b00099 CrossRefPubMedGoogle Scholar
  95. 95.
    Weber W (2000) Ein neues semiempirisches NDDO-Verfahren mit Orthogonaliseirungskorrekturen: Entwicklung des Modells, Implementierung, Parametrisierung und Anwendung. PhD thesis, Universität Zürich, Zürich, Hartung-Gorre VerlagGoogle Scholar
  96. 96.
    Weber W, Thiel W (2000) Orthogonalization corrections for semiempirical methods. Theor Chem Accounts 103:495–506.  https://doi.org/10.1007/s002149900083 CrossRefGoogle Scholar
  97. 97.
    Silva-Junior MR, Thiel W (2010) Benchmark of electronically excited states for semiempirical methods: MNDO, AM1, PM3, OM1, OM2, OM3, INDO/S, and INDO/S2. J Chem Theory Comput 6:1546–1564CrossRefPubMedGoogle Scholar
  98. 98.
    Thiel W (2018) MNDO, development version. Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, GermanyGoogle Scholar
  99. 99.
    Rowan T (1990) Functional stability analysis of numerical algorithms. PhD Thesis, University of Texas at Austin, USAGoogle Scholar
  100. 100.
    Johnson S (2008) The NLopt nonlinear-optimization package. http://ab-initio.mit.edu/nlopt
  101. 101.
    Koskinen P, Mäkinen V (2009) Density-functional tight-binding for beginners. Comput Mater Sci 47:237–253.  https://doi.org/10.1016/j.commatsci.2009.07.013 CrossRefGoogle Scholar
  102. 102.
    Scuseria GE, Engelmann AR, Contreras RH (1982) Unrestricted Hartree-Fock instabilities in nuclear spin-spin coupling calculations. The MNDO method. Theor Chim Acta 61:49–57.  https://doi.org/10.1007/BF00573864 CrossRefGoogle Scholar
  103. 103.
    Scuseria GE, Contreras RH (1980) Unrestricted Hartree–Fock instabilities in semiempirical CNDO/S and INDO/S calculations of spin-spin coupling constants. Theor Chim Acta 59:437–450.  https://doi.org/10.1007/BF00553399 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chair for Theoretical ChemistryTechnische Universität MünchenGarchingGermany
  2. 2.Max-Planck-Institut für KohlenforschungMülheim an der RuhrGermany

Personalised recommendations