Advertisement

Structural characterization and heterologous expression of a new cyt gene cloned from Bacillus thuringiensis

  • Bhupendra S. Panwar
  • Sarvjeet KaurEmail author
Original Paper
  • 45 Downloads

Abstract

Bacillus thuringiensis (Bt) strains produce Cry (crystal) and Cyt (cytolytic) proteins belonging to the group of bacterial toxins known as pore-forming toxins (PFTs), which interact with midgut cells of target insects to create pores, disruption of ion homeostasis and eventual death. PFTs have synergistic insecticidal activities and have been used as biopesticides against agriculturally important insects. Identification of new Cyt proteins is important because of their specific toxicity towards hemipteran pests, against which the Cry proteins are not effective. We have structurally characterized a cyt (cyt1007) gene from an Indian Bt isolate SK-1007. The presence of a “Bacillus thuringiensis toxin” domain and maximum identity of 36% with Cyt2Ca in the deduced amino acid sequence indicated Cyt1007 protein to be a new member of Cyt family. Three dimensional (3D) modeling (PMDB ID: PM0081490) revealed that it adopts a typical ferredoxin-like fold, and is composed of a single domain of α/β architecture, in which a single β sheet is surrounded by two α helical layers. The putative lipid binding site and probable mode of action of Cyt1007 protein were predicted through comparative analysis with other Cyt toxins and their distant homologs Evf (Erwinia virulence factor) and VVA2 (Volvatoxin A2). Heterologous expression of cyt1007 gene as a 25 kDa protein in Escherichia coli was achieved at high levels in both soluble and insoluble fractions. Affinity chromatography-based purification yielded 83.6% purified Cyt1007 protein, which can be used for downstream applications for the investigation of its toxicity.

Graphical abstract

Steps in the structural characterization and heterologous expression of a new cyt gene cloned from Bacillus thuringiensis

Keywords

Cyt toxin cyt gene Bacillus thuringiensis Insecticidal crystal protein Heterologous expression Structural characterization 

Notes

Acknowledgments

B.S.P. acknowledges University Grants Commission (UGC), Government of India for providing a junior research fellowship. We acknowledge the ICAR-National Research Centre on Plant Biotechnology for providing the infrastructure and facilities for carrying out this study. Part of this work forms a part of the PhD thesis by B.S.P. submitted to the Post-Graduate School, ICAR-IARI, New Delhi, India.

Compliance with ethical standards

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary material

894_2019_3994_MOESM1_ESM.zip (1.5 mb)
ESM 1 (ZIP 1579 kb)

References

  1. 1.
    Soberon M, Lopez-Diaz JA, Bravo A (2013) Cyt toxins produced by Bacillus thuringiensis: a protein fold conserved in several pathogenic microorganisms. Peptides 41:87–93.  https://doi.org/10.1016/j.peptides.2012.05.023 CrossRefPubMedGoogle Scholar
  2. 2.
    Adang MJ, Crickmore N, Jurat-Fuentes JL (2014) Diversity of Bacillus thuringiensis crystal toxins and mechanism of action. In: Dhadialla TS, Gill SS (eds) Advances in insect physiology, vol 47. Academic, Oxford, pp 39–87Google Scholar
  3. 3.
    Butko P (2003) Cytolytic toxin Cyt1A and its mechanism of membrane damage: data and hypotheses. Appl Environ Microbiol 69:2415–2422CrossRefGoogle Scholar
  4. 4.
    Manceva DS, Pusztai-Carey M, Russo PS, Butko PA (2005) Detergent-like mechanism of action of the cytolytic toxin Cyt1A from Bacillus thuringiensis var. israelensis. Biochemistry 44:589–597CrossRefGoogle Scholar
  5. 5.
    Cohen S, Albeck S, Ben-Dov E, Cahan R, Firer M, Zaritsky A, Dym O (2011) Cyt1Aa toxin: crystal structure reveals implications for its membrane-perforating function. J Mol Biol 413:804–814CrossRefGoogle Scholar
  6. 6.
    Perez C, Munoz-Garay C, Portugal LC, Sanchez J, Gill SS, Soberon M, Bravo A (2007) Bacillus thuringiensis ssp. israelensis Cyt1Aa enhances activity of Cry11Aa toxin by facilitating the formation of a pre-pore oligomeric structure. Cell Microbiol 9:2931–2937CrossRefGoogle Scholar
  7. 7.
    Elleuch J, Zghal RZ, Jemma M, Azzouz H, Tounsi S, Jaoua S (2014) New Bacillus thuringiensis combinations for biological control of lepidopteran larvae. Int J Biol Macromolecules 65:148–154CrossRefGoogle Scholar
  8. 8.
    Monnerat R, Pereira E, Teles B, Martins E, Praça L, Queiroz P, Soberon M, Bravo A, Ramos F, Soares CM (2014) Synergistic activity of Bacillus thuringiensis toxins against Simulium spp. larvae. J Invertebr Pathol 121:70–73CrossRefGoogle Scholar
  9. 9.
    Kaikaew A, Promptmas C, Angsuthanasombat C (2016) Importance of Thr(328) and Thr(369) for functional maintenance of two receptor-binding β-hairpins of the Bacillus thuringiensis Cry4Ba toxin: implications for synergistic interactions with Cyt2Aa2. Biochem Biophys Res Commun 469:698–703.  https://doi.org/10.1016/j.bbrc.2015.11.115 CrossRefPubMedGoogle Scholar
  10. 10.
    Xu C, Wang B-C, Yu Z, Sun M (2014) Structural insights into Bacillus thuringiensis cry, Cyt and parasporin toxins. Toxins (Basel) 6:2732–2770CrossRefGoogle Scholar
  11. 11.
    Crickmore N, Zeigler DR, Schnepf E, van Rie J, Lereclus D, Baum J, Bravo A, Dean DH Bacillus thuringiensis Toxin Nomenclature. http://www.lifesci.sussex.ac.uk/home/Neil_Crickmore/Bt/ (accessed 20 March 2018)
  12. 12.
    Bourgouin C, Klier A, Rapoport G (1986) Characterization of the genes encoding the haemolytic toxin and the mosquitocidal delta-endotoxin of Bacillus thuringiensis israelensis. Mol Gen Genet 205:390–397CrossRefGoogle Scholar
  13. 13.
    Wu D, Chang F (1985) Synergism in mosquitocidal activity of 26 and 65 kDa proteins from Bacillus thuringiensis subsp. israelensis crystal. FEBS Lett 190:232–236CrossRefGoogle Scholar
  14. 14.
    Federici BA, Bauer LS (1998) Cyt1Aa protein of Bacillus thuringiensis is toxic to the cottonwood leaf beetle, Chrysomela scripta, and suppresses high levels of resistance to Cry3Aa. Appl Environ Microbiol 64:4368–4371PubMedPubMedCentralGoogle Scholar
  15. 15.
    Porcar M, Grenier A-M, Federici B, Rahbe Y (2009) Effects of Bacillus thuringiensis endotoxins on the pea aphid (Acyrthosiphon pisum). Appl Environ Microbiol 75:4897–4900CrossRefGoogle Scholar
  16. 16.
    van Frankenhuyzen K, Tonon A (2013) Activity of Bacillus thuringiensis cyt1Ba crystal protein against hymenopteran forest pests. J Invertebr Pathol 113:160–162CrossRefGoogle Scholar
  17. 17.
    Cahan R, Friman H, Nitzan Y (2008) Antibacterial activity of Cyt1Aa from Bacillus thuringiensis subsp. israelensis. Microbiology 154:3529–3536CrossRefGoogle Scholar
  18. 18.
    Tabashnik BE, Carriere Y (2017) Surge in insect resistance to transgenic crops and prospects for sustainability. Nature Biotechnol 35:926–935CrossRefGoogle Scholar
  19. 19.
    Chougule NP, Li H, Liu S, Linz LB, Narva KE, Meade T, Bonning BC (2013) Retargeting of the Bacillus thuringiensis toxin Cyt2Aa against hemipteran insect pests. Proc Natl Acad Sci USA 110:8465–8470CrossRefGoogle Scholar
  20. 20.
    Panwar BS, Ram C, Narula RK, Kaur S (2018) Pool deconvolution approach for high-throughput gene mining from Bacillus thuringiensis. Appl Microbiol Biotechnol 102:1467–1482.  https://doi.org/10.1007/s00253-017-8633-6 CrossRefGoogle Scholar
  21. 21.
    Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208CrossRefGoogle Scholar
  22. 22.
    Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31:3784–3788CrossRefGoogle Scholar
  23. 23.
    Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44:D279–D285.  https://doi.org/10.1093/nar/gkv1344 CrossRefGoogle Scholar
  24. 24.
    Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn AF, Sangrador-Vegas A, Scheremetjew M, Yong S-Y, Lopez R, Hunter S (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30:1236–1240.  https://doi.org/10.1093/bioinformatics/btu031 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Marchler-Bauer A, Anderson JB, Cherukuri PF, DeWeese-Scott C, Geer LY, Gwadz M, He S, Hurwitz DI, Jackson JD, Ke Z (2005) CDD: a conserved domain database for protein classification. Nucleic Acids Res 33(suppl_1):D192–D196PubMedGoogle Scholar
  26. 26.
    Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015) The I-TASSER suite: protein structure and function prediction. Nat Methods 12:7–8CrossRefGoogle Scholar
  27. 27.
    Ramachandran S, Kota P, Ding F, Dokholyan NV (2011) Automated minimization of steric clashes in protein structures. Proteins79:261–270CrossRefGoogle Scholar
  28. 28.
    MacKerell Jr AD, Bashford D, Bellott M, Dunbrack Jr RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616CrossRefGoogle Scholar
  29. 29.
    van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718CrossRefGoogle Scholar
  30. 30.
    Berendsen HJ, Postma JP, van Gunsteren WF, Hermans J (1981) Interaction models for water in relation to protein hydration. Intermolecular forces. Springer, Berlin, pp 331–342Google Scholar
  31. 31.
    Berendsen HJ, Jv P, van Gunsteren WF, DiNola A, Haak J (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690CrossRefGoogle Scholar
  32. 32.
    Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190CrossRefGoogle Scholar
  33. 33.
    Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N· log (N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092CrossRefGoogle Scholar
  34. 34.
    Cowan R, Grosdidier G (2000) Visualization tools for monitoring and evaluation of distributed computing systems. Proceedings of the international conference on computing in high energy and nuclear physics, PadovaGoogle Scholar
  35. 35.
    Lovell SC, Davis IW, Arendall WB, de Bakker PI, Word JM, Prisant MG, Richardson JS, Richardson DC (2003) Structure validation by Cα geometry: ϕ, ψ and Cβ deviation. Proteins 50:437–450CrossRefGoogle Scholar
  36. 36.
    Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2:1511–1519CrossRefGoogle Scholar
  37. 37.
    Eisenberg D, Lüthy R, Bowie JU (1997) VERIFY3D: assessment of protein models with three-dimensional profiles. Methods Enzymol 277:396–404CrossRefGoogle Scholar
  38. 38.
    DeLano WL (2002) PyMOL: An open source molecular graphics tool. http://www.pymol.org
  39. 39.
    Kawabata T (2003) MATRAS: a program for protein 3D structure comparison. Nucleic Acids Res 31:3367–3369CrossRefGoogle Scholar
  40. 40.
    Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid 9. Nucleic Acids Res 7:1513–1523CrossRefGoogle Scholar
  41. 41.
    Ikai A (1980) Thermostability and aliphatic index of globular proteins. J Biochem 88:1895–1898PubMedGoogle Scholar
  42. 42.
    Idicula-Thomas S, Balaji PV (2005) Understanding the relationship between the primary structure of proteins and its propensity to be soluble on overexpression in Escherichia coli. Protein Sci 14:582–592CrossRefGoogle Scholar
  43. 43.
    Smialowski P, Martin-Galiano AJ, Mikolajka A, Girschick T, Holak TA, Frishman D (2006) Protein solubility: sequence based prediction and experimental verification. Bioinformatics 23:2536–2542CrossRefGoogle Scholar
  44. 44.
    Loth K, Costechareyre D, Effantin G et al (2015) New Cyt-like δ-endotoxins from Dickeya dadantii: structure and aphicidal activity. Sci Rep 5:8791.  https://doi.org/10.1038/srep08791 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Li J, Koni PA, Ellar DJ (1996) Structure of the mosquitocidal δ-endotoxin CytB from Bacillus thuringiensis sp. kyushuensis and implications for membrane pore formation. J Mol Biol 257:129–152CrossRefGoogle Scholar
  46. 46.
    Lin SC, Lo YC, Lin JY, Liaw YC (2004) Crystal structures and electron micrographs of fungal volvatoxin A2. J Mol Biol 343:477–491CrossRefGoogle Scholar
  47. 47.
    Weng Y-P, Lin Y-P, Hsu C-I, Lin J-Y (2004) Functional domains of a pore-forming cardiotoxic protein, volvatoxin A2. J Biol Chem 279:6805–6814CrossRefGoogle Scholar
  48. 48.
    Wu PT, Lin SC, Hsu CI, Liaw YC, Lin JY (2006) Inhibitory effects of nontoxic protein volvatoxin A1 on pore-forming cardiotoxic protein volvatoxin A2 by interaction with amphipathic alpha-helix. FEBS J 273:3160–3171CrossRefGoogle Scholar
  49. 49.
    Tharad S, Toca-Herrera JL, Promdonkoy B, Krittanai C (2016) Bacillus thuringiensis Cyt2Aa2 toxin disrupts cell membranes by forming large protein aggregates. Biosci Rep 36 art:e00394.  https://doi.org/10.1042/BSR20160090 CrossRefGoogle Scholar
  50. 50.
    Rigden DJ (2009) Does distant homology with Evf reveal a lipid binding site in Bacillus thuringiensis cytolytic toxins? FEBS Lett 583(10):1555–1560CrossRefGoogle Scholar
  51. 51.
    Dahlroth S-L, Nordlund P, Cornvik T (2006) Colony filtration blotting for screening soluble expression in Escherichia coli. Nat Protoc 1:253CrossRefGoogle Scholar
  52. 52.
    Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:172.  https://doi.org/10.3389/fmicb.2014.00172 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Gräslund S, Nordlund P, Weigelt J, Bray J, Gileadi O, Knapp S, Oppermann U, Arrowsmith C, Hui R, Ming J (2008) Protein production and purification. Nat Methods 5:135–146CrossRefGoogle Scholar
  54. 54.
    Vincent SG, Cunningham PR, Stephens NL, Halayko AJ, Fisher JT (1997) Quantitative densitometry of proteins stained with coomassie blue using a Hewlett Packard scanjet scanner and Scanplot software. Electrophoresis 18:67–71CrossRefGoogle Scholar
  55. 55.
    Khasdan V, Sapojnik M, Zaritsky A, Horowitz R, Boussiba S, Rippa M, Manasherob R, Ben-Dov E (2007) Larvicidal activities against agricultural pests of transgenic Escherichia coli expressing combinations of four genes from Bacillus thuringiensis. Arch Microbiol 188:643–653CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.ICAR-National Research Centre on Plant BiotechnologyPusa CampusNew DelhiIndia

Personalised recommendations