A DFT study on catalytic oxidative desulfurization with H2O2 over Ti-MWW zeolite

  • Hanlu WangEmail author
  • Mei Yu
  • Zhigeng Lin
Original Paper


The catalytic mechanism of Ti-MWW in oxidative desulfurization with H2O2 was investigated by quantum chemical calculations. A defect model (Ti-d) and a perfect model (Ti-p) were proposed for Ti-MWW, and two possible reaction pathways starting from Ti-d and Ti-p were considered. On Ti-d, the hydroperoxy bidentate intermediate TiOOH (η2) was formed by activating H2O2 at the Ti center. Afterwards, aromatic sulfides were oxidized to sulfoxides and to ultimate sulfones by TiOOH (η2). The order of oxidation reactivity was benzothiophene > dibenzothiophene > thiophene, conforming to experimental observations. The Ti-p pathway proposed for oxidation of sulfides with H2O2 resulted in higher energy barriers compared to the Ti-d pathway. Natural bond orbital charge analysis was carried out to understand the charge distribution. This work showed that the defective Ti-MWW model for oxidative desulfurization was more active than the perfect model.

Graphical abstract

Catalytic oxidative desulfurizationwith H2O2 over Ti-MWW zeolite


Ti-MWW DFT, Oxidative desulfurization Sulfides Sulfone 



National Natural Science Foundation of China (21403038), Guangdong Provincial Natural Science Foundation (2015A030313892, 2014A030307048), and Petrochemical Industry Transformation and Upgrading Technology Innovation Public Service Platform in Maoming City (2016B020211001).

Supplementary material

894_2019_3989_MOESM1_ESM.doc (14.9 mb)
ESM 1 (DOC 15227 kb)


  1. 1.
    Mao X, Sun Y, Pei S (2015) Comput Theor Chem 1074:112–124CrossRefGoogle Scholar
  2. 2.
    Yue D, Lei J, Lina Z, Zhenran G, Du X, Li J (2018) J Porous Mater:1–12Google Scholar
  3. 3.
    Ullah R, Bai P, Wu P, Liu B, Subhan F, Yan Z (2017) Microporous Mesoporous Mater 238:36–45CrossRefGoogle Scholar
  4. 4.
    Wang L, Zhao L, Xu C, Wang Y, Gao J (2017) Appl Surf Sci 399:440–450CrossRefGoogle Scholar
  5. 5.
    Du S, Li F, Sun Q, Wang N, Jia M, Yu J (2016) Chem Commun 52(16):3368–3371CrossRefGoogle Scholar
  6. 6.
    Du S, Chen X, Sun Q, Wang N, Jia M, Valtchev V, Yu J (2016) Chem Commun 52(17):3580–3583CrossRefGoogle Scholar
  7. 7.
    Song H-Y, Li G, Wang X-S, Xu Y-J (2010) Catal Today 149(1–2):127–131CrossRefGoogle Scholar
  8. 8.
    Chen S, Liu Y, Gao J, Wang L, Liu X, Gao G, Wu P, He M (2006) Chin J Catal 27(7):547–549CrossRefGoogle Scholar
  9. 9.
    Hulea V, Fajula F, Bousquet J (2001) J Catal 198:179–186CrossRefGoogle Scholar
  10. 10.
    Sengupta A, Kamble PD, Basu JK, Sengupta S (2012) Ind Eng Chem Res 51(1):147–157CrossRefGoogle Scholar
  11. 11.
    Wu P (2003) J Catal 214(2):317–326CrossRefGoogle Scholar
  12. 12.
    Wu P, Tatsumi T, Komatsu T, Yashima T (2000) Chem Lett 29(7):774–775CrossRefGoogle Scholar
  13. 13.
    Qiao Y, Fan Z, Jiang Y, Li N, Dong H, He N, Zhou D (2015) Chin J Catal 36(10):1733–1741CrossRefGoogle Scholar
  14. 14.
    Zhou D, Zhang H, Zhang J, Sun X, Li H, He N, Zhang W (2014) Microporous Mesoporous Mater 195:216–226CrossRefGoogle Scholar
  15. 15.
    Wang Y, Zhou D, Yang G, Miao S, Xiancun Liu A, Bao X (2004) J Phys Chem A 108(32):6730–6734CrossRefGoogle Scholar
  16. 16.
    Wang Y, Zhou D, Yang G, Liu X, Ma D, Liang DB, Bao X (2004) Chem Phys Lett 388(4–6):363–366CrossRefGoogle Scholar
  17. 17.
    Wu P, Nuntasri D, Ruan J, Liu Y, He M, Fan W, Terasaki O, Tatsumi T (2004) J Phys Chem B 108:19126–19131CrossRefGoogle Scholar
  18. 18.
    Fan W, Wu P, Tatsumi T (2008) J Catal 256(1):62–73CrossRefGoogle Scholar
  19. 19.
  20. 20.
    Leonowicz ME, Lawton JA, Lawton SL, Rubin MK (1994) Science 264(5167):1910–1913CrossRefGoogle Scholar
  21. 21.
    Wu P, Tatsumi T, Komatsu T, Yashima T (2001) J Phys Chem B 105(15):2897–2905CrossRefGoogle Scholar
  22. 22.
    Sirijaraensre J, Limtrakul J (2009) Phys Chem Chem Phys 11(3):578–585CrossRefGoogle Scholar
  23. 23.
    Panyaburapa W, Nanok T, Limtrakul J (2007) J Phys Chem C 111(8):3433–3441CrossRefGoogle Scholar
  24. 24.
    Van Speybroeck V, Van der Mynsbrugge J, Vandichel M, Hemelsoet K, Lesthaeghe D, Ghysels A, Marin GB, Waroquier M (2011) J Am Chem Soc 133(4):888–899CrossRefGoogle Scholar
  25. 25.
    Sirijaraensre J, Limtrakul J (2013) Phys Chem Chem Phys 15(41):18093–18100CrossRefGoogle Scholar
  26. 26.
    Goerigk L, Grimme S (2011) Phys Chem Chem Phys 13(14):6670–6688CrossRefGoogle Scholar
  27. 27.
    Van der Mynsbrugge J, Hemelsoet K, Vandichel M, Waroquier M, Van Speybroeck V (2012) J Phys Chem C 116(9):5499–5508CrossRefGoogle Scholar
  28. 28.
    Zeng X, Wang H, DeYonker NJ, Mo G, Zhou R, Zhao C (2014) Theor Chem Accounts 133:1498–1503CrossRefGoogle Scholar
  29. 29.
    Stewart JJP (2007) J Mol Model 13(12):1173–1213CrossRefGoogle Scholar
  30. 30.
    Gonzalez C, Schlegel HB (1990) J Phys Chem 94(14):5523–5527CrossRefGoogle Scholar
  31. 31.
    Carpenter J, Weinhold F (1988) J Mol Struct (THEOCHEM) 169:41–62CrossRefGoogle Scholar
  32. 32.
    Frisch MJ et al (2013) Gaussian 09, Revision D.01. Gaussian Inc, WallingfordGoogle Scholar
  33. 33.
    Wang H, Deng YQ, Zhou R (2018) Theor Chem Accounts 137(5):66CrossRefGoogle Scholar
  34. 34.
    Otsuki S, Nonaka T, Takashima N, Qian W, Ishihara A, Imai T, Kabe T (2000) Energy Fuel 14:1232–1239CrossRefGoogle Scholar
  35. 35.
    Wang H, Xu M, Zhou R (2017) J Mol Model 23(2):54CrossRefGoogle Scholar
  36. 36.
    Sever RR, Root TW (2003) J Phys Chem B 107(17):4080–4089CrossRefGoogle Scholar
  37. 37.
    Wells DH, Delgass WN, Thomson KT (2004) J Am Chem Soc 126(9):2956–2962CrossRefGoogle Scholar
  38. 38.
    Wang H, Zhou R, Deng Y (2018) React Kinet Mech Catal 124(1):45–60CrossRefGoogle Scholar
  39. 39.
    Yudanov IV, Gisdakis P, Valentin CD, Rösch N (1999) Eur J Inorg Chem (12):2135–2145Google Scholar
  40. 40.
    Tantanak D, Vincent MA, Hillier IH (1998) Chem Commun:1031–1032Google Scholar
  41. 41.
    Limtrakul J, Inntam C, Truong TN (2004) J Mol Catal A 27:139–148CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemical EngineeringGuangdong University of Petrochemical TechnologyMaomingPeople’s Republic of China

Personalised recommendations